首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
张永  张辉  张逸  高蕾  卢建臣  蔡金明 《化学进展》2023,35(1):105-118
超高真空环境下,通过自下而上的方法原子级精确合成石墨烯纳米带是打开石墨烯带隙的重要方法。合理地设计带有异质原子(如硼、氮、氧等)的前驱体分子可以合成异质原子掺杂的石墨烯纳米带。掺杂的异质原子可以显著地调制石墨烯纳米带的电学、磁学等物理化学性质,并且调控的效果与异质原子的种类、位置、密度等密切相关。本文综述了近些年来利用分子束外延方法,在表面上合成异质原子掺杂的石墨烯纳米带的研究进展,同时对掺杂石墨烯纳米带的应用前景进行了展望。  相似文献   

2.
We report the first bottom-up synthesis of NBN-doped zigzag-edged GNRs (NBN-ZGNR1 and NBN-ZGNR2) through surface-assisted polymerization and cyclodehydrogenation based on two U-shaped molecular precursors with an NBN unit preinstalled at the zigzag edge. The resultant zigzag-edge topologies of GNRs are elucidated by high-resolution scanning tunneling microscopy (STM) in combination with noncontact atomic force microscopy (nc-AFM). Scanning tunneling spectroscopy (STS) measurements and density functional theory (DFT) calculations reveal that the electronic structures of NBN-ZGNR1 and NBN-ZGNR2 are significantly different from those of their corresponding pristine fully-carbon-based ZGNRs. Additionally, DFT calculations predict that the electronic structures of NBN-ZGNRs can be further tailored to be gapless and metallic through one-electron oxidation of each NBN unit into the corresponding radical cations. This work reported herein provides a feasible strategy for the synthesis of GNRs with stable zigzag edges yet tunable electronic properties.  相似文献   

3.
石墨烯纳米带   总被引:1,自引:0,他引:1  
郑小青  冯苗  詹红兵 《化学进展》2012,24(12):2320-2329
近年来,一种新型的准一维石墨烯基材料即石墨烯纳米带(graphene nanoribbons, GNRs)受到广泛关注,限域的宽度和丰富的边缘构型使其具有许多不同于二维结构大面积石墨烯的性质和应用。本文介绍了GNRs特殊的边缘效应以及由此产生的电学、磁学等特殊性质,在此基础上进一步介绍了GNRs典型的制备方法、缺陷种类、掺杂和化学改性等,并对功能化的GNRs的应用进行了展望。  相似文献   

4.
5.
The incorporation of nanopores into graphene nanostructures has been demonstrated as an efficient tool in tuning their band gaps and electronic structures. However, precisely embedding the uniform nanopores into graphene nanoribbons (GNRs) at the atomic level remains underdeveloped especially for in-solution synthesis due to the lack of efficient synthetic strategies. Herein we report the first case of solution-synthesized porous GNR ( pGNR ) with a fully conjugated backbone via the efficient Scholl reaction of tailor-made polyphenylene precursor ( P1 ) bearing pre-installed hexagonal nanopores. The resultant pGNR features periodic subnanometer pores with a uniform diameter of 0.6 nm and an adjacent-pores-distance of 1.7 nm. To solidify our design strategy, two porous model compounds ( 1 a , 1 b ) containing the same pore size as the shortcuts of pGNR , are successfully synthesized. The chemical structure and photophysical properties of pGNR are investigated by various spectroscopic analyses. Notably, the embedded periodic nanopores largely reduce the π-conjugation degree and alleviate the inter-ribbon π–π interactions, compared to the nonporous GNRs with similar widths, affording pGNR with a notably enlarged band gap and enhanced liquid-phase processability.  相似文献   

6.
We report the on-surface synthesis and spectroscopic study of laterally extended chevron graphene nanoribbons (GNRs) and compare them with the established chevron GNRs, emphasizing the consistency of bandgap reduction of semiconducting GNRs with increased width. The laterally extended chevron GNRs grown on Au(111) exhibit a bandgap of about 2.2 eV, which is considerably smaller than the values reported for chevron GNRs in similar studies.  相似文献   

7.
利用递推格林函数方法,我们研究了褶皱石墨带的电子输运性质.当石墨带具有褶皱时,对于锯齿型石墨带,在第一个范霍夫奇点内,发现了电导隙和伴随着电导振荡的微带.然而,对于金属性扶手型石墨带,在费米能附近仅发现了电导隙,说明扶手型石墨带发生了金属-半导体转变.随着石墨带的褶皱加强,无论是锯齿型还是扶手型石墨带,平均电导都逐渐减小,并趋于0.结果有利于我们理解真实构型石墨带的电子输运性质,并且有助于设计基于石墨带的纳米器件.  相似文献   

8.
Nanometer‐wide graphene nanoribbons can be synthesized from halogen aromatics through multistep on‐surface reactions, but the catalytic role of extrinsic transition‐metal atoms in these reactions are still to be explored. Here by low‐temperature scanning tunneling microscopy, we investigated the on‐surface synthesis of graphene nanoribbons from 10,10′‐dibromo‐9,9′‐bianthryl precursors in the presence of Ni atoms. Ni atoms not only act as catalysts in debromination and lead to the formation of an organometallic intermediate at 300 K, but also prompt the fusion reaction between graphene nanoribbons at 673 K. Our work demonstrates a more efficient way to fabricate fused graphene nanoribbons.  相似文献   

9.
Graphene nanoribbons (GNRs) represent promising materials for the next generation of nanoscale electronics. However, despite substantial progress towards the bottom‐up synthesis of chemically and structurally well‐defined all‐carbon GNRs, strategies for the preparation of their nitrogen‐doped analogs remain at a nascent stage. This scarce literature precedent is surprising given the established use of substitutional doping for tuning the properties of electronic materials. Herein, we report the synthesis of a previously unknown class of polybenzoquinoline‐based materials, which have potential as GNR precursors. Our scalable and facile approach employs few synthetic steps, inexpensive commercial starting materials, and straightforward reaction conditions. Moreover, due to the importance of quinoline derivatives for a variety of applications, the reported findings may hold implications across a diverse range of chemical and physical disciplines.  相似文献   

10.
The solution-phase synthesis is one of the most promising strategies for the preparation of well-defined graphene nanoribbons (GNRs) in large scale. To prepare high quality, defect-free GNRs, cycloaromatization reactions need to be very efficient, proceed without side reaction and mild enough to accommodate the presence of various functional groups. In this Minireview, we present the latest synthetic approaches for the synthesis of GNRs and related structures, including alkyne benzannulation, photochemical cyclodehydrohalogenation, Mallory and Pd- and Ni-catalyzed reactions.  相似文献   

11.
Graphene nanoribbon is a novel variety of graphene with high length‐to‐width ratio and straight edges. Herein, we report an improved method for the synthesis of graphene oxide nanoribbons (GONRs) from longitudinal unraveling of multiwalled carbon nanotubes by means of a one‐step, one‐pot pressurized oxidation reaction. The obtained GONRs were characterized by different techniques. Furthermore, owing to their unique properties such as strong optical absorption and good water dispersibility, we show that GONRs can be used as an excellent matrix or probe in matrix‐assisted or surface‐enhanced laser desorption/ionization mass spectrometry (MALDI or SELDI MS) for the first time. In MALDI MS, GONRs generated significantly higher signals than conventional organic matrix and other graphene‐based matrices in the detection of low‐mass compounds. We also demonstrate the use of GONRs as a sensitive SELDI probe for simultaneous detection of multiple small molecules and profiling of small molecules in complex environmental samples, thus revealing its application potential in rapid screening of low‐mass pollutants in complex media.  相似文献   

12.
Narrow thiophene‐edged graphene nanoribbons (GNRs) were prepared from polychlorinated thiophene‐containing poly(p‐phenylene)s using the photochemical, metal‐free cyclodehydrochlorination (CDHC) reaction. 1H NMR and Raman spectroscopy confirmed the structures of the GNRs. The regioselectivity of the CDHC reaction allows the preparation of both laterally symmetrical and unsymmetrical GNRs and, consequently, the modulation of their optical and electronic properties.  相似文献   

13.
Graphene nanoribbons (GNR) were generated in ethanol solution by unzipping pyrrolidine-functionalized carbon nanotubes under mild conditions. Evaporation of the solvent resulted in regular few-layer stacks of graphene nanoribbons observed by transmission electron microscopy (TEM) and X-ray diffraction. The experimental interlayer distance (0.49–0.56 nm) was confirmed by computer modelling (0.51 nm). Computer modelling showed that the large interlayer spacing (compared with graphite) is due to the presence of the functional groups and depends on their concentration. Stacked nanoribbons were observed to redissolve upon solvent addition. This preparation method could allow the fine-tuning of the interlayer distances by controlling the number and/or the nature of the chemical groups in between the graphene layers.  相似文献   

14.
基于密度泛函理论的计算模拟, 对含有孔洞的zigzag型石墨烯纳米带(N=17, N为碳链数目)结构进行优化, 进一步计算得到体系存在不同孔洞时的电子输运性质. 研究结果表明: 当存在单个孔洞时, 体系的导电性不仅与量子限域效应有关, 还受到孔洞对称性的束缚, 且斜向对称比纵向对称受到的束缚更大; 对于双孔洞的情况, 由于孔洞间的耦合作用, 体系的导电性在较大距离范围内大体上随孔洞间距的增大而增强, 同时会出现一些量子现象, 这可用一维对称双势垒模型来解释.  相似文献   

15.
By taking advantage of an unexpected regioselectivity of intramolecular Scholl reactions on pentaphenylene compounds that favors distorted [5]helicenes over their flat counterparts, a new synthetic approach to twisted graphene nanoribbons has been designed based on side‐fused di‐tert‐butyl‐[5]helicene fragments. Syntheses of both small monomers and dimers have been achieved and their structures have been studied. An iterative synthetic strategy has been developed for the formation of longer flexible precursors, which relies on the step‐by‐step elongation of mono‐functionalized oligomeric chains. The flexible trimer and tetramer have, thus, been synthesized and submitted to intramolecular Scholl reactions, which revealed important purification and characterization issues.  相似文献   

16.
The solution‐phase synthesis is one of the most promising strategies for the preparation of well‐defined graphene nanoribbons (GNRs) in large scale. To prepare high quality, defect‐free GNRs, cycloaromatization reactions need to be very efficient, proceed without side reaction and mild enough to accommodate the presence of various functional groups. In this Minireview, we present the latest synthetic approaches for the synthesis of GNRs and related structures, including alkyne benzannulation, photochemical cyclodehydrohalogenation, Mallory and Pd‐ and Ni‐catalyzed reactions.  相似文献   

17.
Graphene nanoribbons (GNRs) and nanographenes synthesized by on-surface reactions using tailor-made molecular precursors offer an ideal playground for a study of magnetism towards nano-spintronics. Although the zigzag edge of GNRs has been known to host magnetism, the underlying metal substrates usually veil the edge-induced Kondo effect. Here, we report the on-surface synthesis of unprecedented, π-extended 7-armchair GNRs using 7-bromo-12-(10-bromoanthracen-9-yl)tetraphene as the precursor. Characterization by scanning tunneling microscopy/spectroscopy revealed unique rearrangement reactions leading to pentagon- or pentagon/heptagon-incorporated, nonplanar zigzag termini, which demonstrated Kondo resonances even on bare Au(111). Density functional theory calculations indicate that the nonplanar structure significantly reduces the interaction between the zigzag terminus and the Au(111) surface, leading to a recovery of the spin localization of the zigzag edge. Such a distortion of planar GNR structures offers a degree of freedom to control the magnetism on metal substrates.  相似文献   

18.
The structure, electromagnetic and optical properties of the O-terminated graphene nanorib-bons with armchair edge are studied using first-principles theory. The results show that the O-terminated armchair edge are more stable than the H-terminated ribbons and show metal-lic character. Spin-polarized calculations reveal that the antiferromagnetic state are more stable than the ferromagnetic state. The energy band and density of states analyses show that the O-terminated armchair edge are antiferromagnetic semiconductors. Because of the terminated O atoms, the dielectric function has an evident red shift and the first peak is the strongest with its main contribution derived from the highest valence band. The peaks of the dielectric function, re ection, absorption, energy loss are related to the transition of electrons. Our results suggest that the O-terminated graphene nanoribbons have potential applications in nanoelectronics, opto-electric devices.  相似文献   

19.
Armchair型石墨纳米带的电子结构和输运性质   总被引:1,自引:0,他引:1  
利用第一性原理的电子结构和输运性质计算方法, 研究了扶手椅(armchair)型单层石墨纳米带(具有锯齿边缘)的电子结构和输运性质及其边缘空位缺陷效应. 研究发现, 完整边缘的扶手椅型石墨纳米带是典型的金属性纳米带, 边缘空位缺陷的存在对扶手椅型纳米带能带结构有一定的影响,但并不彻底改变其金属性特征.  相似文献   

20.
Structurally defined graphene nanoribbons (GNRs) have emerged as promising candidates for nanoelectronic devices. Low band gap (<1 eV) GNRs are particularly important when considering the Schottky barrier in device performance. Here, we demonstrate the first solution synthesis of 8-AGNRs through a carefully designed arylated polynaphthalene precursor. The efficiency of the oxidative cyclodehydrogenation of the tailor-made polymer precursor into 8-AGNRs was validated by FT-IR, Raman, and UV/Vis-near-infrared (NIR) absorption spectroscopy, and further supported by the synthesis of naphtho[1,2,3,4-ghi]perylene derivatives ( 1 and 2 ) as subunits of 8-AGNR , with a width of 0.86 nm as suggested by the X-ray single crystal analysis. Low-temperature scanning tunneling microscopy (STM) and solid-state NMR analyses provided further structural support for 8-AGNR . The resulting 8-AGNR exhibited a remarkable NIR absorption extending up to ∼2400 nm, corresponding to an optical band gap as low as ∼0.52 eV. Moreover, optical-pump TeraHertz-probe spectroscopy revealed charge-carrier mobility in the dc limit of ∼270 cm2 V−1 s−1 for the 8-AGNR .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号