首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a study of Nernst and Seebeck coefficients of the heavy-fermion superconductor CeCoIn5. Below 18 K, concomitant with a field-dependent Seebeck coefficient, a large sublinear Nernst signal emerges with a magnitude drastically exceeding what is expected for a multiband Fermi-liquid metal. In the mixed state, in contrast with all other superconductors studied before, this signal overwhelms the one associated with the motion of superconducting vortices. The results point to a hitherto unknown source of transverse thermoelectricity in strongly interacting electrons.  相似文献   

2.
The first study of the Nernst effect in NbSe2 reveals a large quasiparticle contribution with a magnitude comparable and a sign opposite to the vortex signal. Comparing the effect of the charge density wave (CDW) transition on Hall and Nernst coefficients, we argue that this large Nernst signal originates from the thermally induced counterflow of electrons and holes and indicates a drastic change in the electron scattering rate in the CDW state. The results provide new input for the debate on the origin of the anomalous Nernst signal in high-T(c) cuprates.  相似文献   

3.
《Solid State Communications》2002,121(6-7):323-327
At ultrahigh pressures up to 30 GPa the thermomagnetic Nernst–Ettingshausen effect was measured for Te and Se samples in the vicinity of semiconductor–metal phase boundary. The significant longitudinal and transverse Nernst–Ettingshausen effects observed for both semiconductors allowed one to estimate the scattering parameter for charge carriers. The increase in hole mobility obtained from longitudinal and transverse Nernst–Ettingshausen effects being consistent with the growth of magnetoresistance under pressure gave confirmation to the decrease in the effective mass of holes at the closure of direct semiconductor gap.  相似文献   

4.
We study the electronic band structure, density distribution, and transport of a Bi_2Se_3 nanoribbon. We find that the density distribution of the surface states is dependent on not only the shape and size of the transverse cross section of the nanoribbon, but also the energy of the electron. We demonstrate that a transverse electric field can eliminate the coupling between surface states on the walls of the nanoribbon, remove the gap of the surface states, and restore the quantum spin Hall effects. In addition, we study the spin-dependent transport property of the surface states transmitting from top and bottom surfaces(x-y plane) to the side surfaces(z-x plane) of a Bi_2Se_3 nanoribbon. We find that transverse electric fields can open two surface channels for spin-up and-down Dirac electrons, and then switch off one channel for the spin-up Dirac electron. Our results may provide a simple way for the design of a spin filter based on topological insulator nanostructures.  相似文献   

5.
6.
We report observation of intrinsic inverse spin Hall effect in undoped GaAs multiple quantum wells with a sample temperature of 10 K. A transient ballistic pure spin current is injected by a pair of laser pulses through quantum interference. By time resolving the dynamics of the pure spin current, the momentum relaxation time is deduced, which sets the lower limit of the scattering time between electrons and holes. The transverse charge current generated by the pure spin current via the inverse spin Hall effect is simultaneously resolved. We find that the charge current is generated well before the first electron-hole scattering event. Generation of the transverse current in the scattering-free ballistic transport regime provides unambiguous evidence for the intrinsic inverse spin Hall effect.  相似文献   

7.
利用矢量角谱法和稳相法,研究了涡旋洛伦兹-高斯光束的远场矢量结构特征,导出了横电项(TE项)和横磁项(TM项)远场电磁场和相应能流的解析表达式。通过相应的数值计算,分析了拓扑电荷数对涡旋洛伦兹-高斯光束及其矢量结构项远场能流分布的影响。TE项由位于竖直方向的2瓣或3瓣组成,TM项可由TE项旋转90得到。涡旋洛伦兹-高斯光束在拓扑电荷数小时内部中空,外部亮环均匀分布。增大拓扑电荷数,涡旋洛伦兹-高斯光束外部亮环上的能流呈起伏分布,内部变化相对复杂。涡旋洛伦兹-高斯光束及其矢量结构项的光斑尺寸随拓扑电荷数的增大而增大,但会饱和。研究显示,涡旋洛伦兹-高斯光束在实际应用时拓扑电荷数不宜过大。  相似文献   

8.
袁建辉  成泽  张建军  曾奇军  张俊佩 《中国物理 B》2012,21(4):47203-047203
In this paper, we investigate the transport features and the Fano factor of Dirac electrons on the surface of a three-dimensional topological insulator with a magnetic modulation. We consider a hard wall bounding condition on the edge of the topological insulator, which implies that a surface state of the topological insulator is insulating. We find that a valley of conductivity at the Dirac point is associated with a Fano factor peak, and more interestingly, this topological metal changes from insulating to metallic by controlling the effective exchange field.  相似文献   

9.
Information on the density of states of two-dimensional Dirac fermions in a 6.6-nm-thick HgTe quantum well that corresponds to a transition from the direct to inverted spectrum is obtained for the first time by means of capacitance measurements. It is found that the density of states of Dirac electrons is a linear function of the Fermi energy at E F > 30 meV with the corresponding velocity vDF = 8.2 × 105 m/s. At lower energies, this dependence deviates from the linear law, indicating a strong effect of disorder, which is associated with fluctuations of a built-in charge, on the density of states of the studied system near the Dirac point. At negative energies, a sharp increase in the density of states is observed, which is associated with the tail of the density of states of valleys of heavy holes. The described behavior is in agreement with the proposed model, which includes both the features of the real spectrum of Dirac fermions and the effect of the fluctuation potential.  相似文献   

10.
卢海舟  沈顺清 《中国物理 B》2016,25(11):117202-117202
Weak localization and antilocalization are quantum transport phenomena that arise from the quantum interference in disordered metals.At low temperatures,they can give distinct temperature and magnetic field dependences in conductivity,allowing the symmetry of the system to be explored.In the past few years,they have also been observed in newly emergent topological materials,including topological insulators and topological semimetals.In contrast from the conventional electrons,in these new materials the quasiparticles are described as Dirac or Weyl fermions.In this article,we review our recent efforts on the theories of weak antilocalization and interaction-induced localization for Dirac and Weyl fermions in topological insulators and topological semimetals.  相似文献   

11.
We present a qualitative and quantitative study of the magneto-thermoelectric effect of graphene. In the limit of impurity scattering length being much longer than the lattice constant, the intra-valley scattering dominates the charge and thermal transport. The self-energy and the Green's functions are calculated in the self-consistent Born approximation. It is found that the longitudinal thermal conductivity splits into double peaks at high Landau levels and exhibits oscillations which are out of phase with the electric conductivity. The chemical potential-dependent electrical resistivity, the thermal conductivities, the Seebeck coefficient, and the Nernst coefficient are obtained. The results are in good agreement with the experimental observations.  相似文献   

12.
The studies of electron transport through a junction of topological materials in the literature so far ignore the coupling of a topological material to its surrounding environment. Here, the dynamics of an open system through a stochastic Hamiltonian are simulated to investigate the influence of the environment on the scattering of electrons by a junction of different topological materials, such as a Dirac–Weyl magnetic junction and a topological insulator. It is found that, although the detrimental effect of the environment is inevitable, the Landauer conductance can be enhanced via adjusting the system–environment coupling strength. This result supplies the possibilty of changing the transport feature of topological materials by modulating the surrounded environment. It is also demonstrated that a non-Hermitian Hamiltonian can be used to replace the stochastic Hamiltonian for this study, when the system and the environment coupling are weak.  相似文献   

13.
郑军  李春雷  杨曦  郭永 《物理学报》2017,66(9):97302-097302
基于非平衡态格林函数方法,理论研究了与四个电极耦合的双量子点系统中的自旋和电荷能斯特效应,考虑了不同电极的磁动量结构和量子点内以及量子点间电子的库仑相互作用对热电效应的影响.结果表明铁磁端口中的磁化方向能够有效地调节能斯特效应:当电极1和电极3中的磁化方向反平行排列时,通过施加横向的温度梯度,系统中将会出现纯的自旋能斯特效应;当电极4从普通金属端口转变为铁磁金属端口时,将同时观测到电荷和自旋能斯特效应.研究发现,能斯特效应对于铁磁电极极化强度的依赖程度较弱,但对库仑排斥作用十分敏感.在量子点内和点间库仑排斥作用的影响下,自旋及电荷能斯特系数有望提高两个数量级.  相似文献   

14.
The dispersion law of one-dimensional plasmons in a quasi-one-dimensional system of massless Dirac fermions has been calculated. Two model two-dimensional systems where bands of edge states filled with such Dirac fermions appear at the edge have been considered. Edge states in the first system, topological insulator, are due to topological reasons. Edge states in the second system, system of massive Dirac fermions, have Tamm origin. It has been shown that the dispersion laws of plasmons in both systems in the long-wavelength limit differ only in the definition of the parameters (velocity and localization depth of Dirac fermions). The frequency of plasmons is formally quantum (ω ∝ ? ?1/2) and, in the case of the Coulomb interaction between electrons, depends slightly on the Fermi level E F. The dependence on E F is stronger in the case of short-range interaction. The quantum features of oscillations of massless one-dimensional Dirac fermions are removed by introducing the mass of Dirac fermions at the Fermi level and their density. Correspondence to the dispersion law of classical one-dimensional plasma oscillations in a narrow stripe of “Schrödinger” electrons has been revealed.  相似文献   

15.
The angular dependence of the magnetothermopower of a charge transfer organic salt α-(ET)(2)KHg(SCN)(4) below (4 K) and above (9 K) the phase transition temperature, T(p) = 8 K, and under fields of 15 T and 25 T, below and above the 'kinkfield', has been studied. We find that for a longitudinal thermoelectric measurement both an interlayer thermopower (the Seebeck effect), S(zz), and a transverse thermopower (the Nernst effect), S(yz), exist in all three different B-T phases (the CDW (0), CDW (x) and metallic states) with large amplitude. Both thermoelectric effects display a resonant-like behavior without a sign reversal at the angles corresponding to angular magnetoresistance oscillation minima and maxima in this compound. The resonant behavior is most evident in the CDW(0) state, indicating a mechanism involving the Fermi surface nesting. Angular dependences reveal different behaviors of the thermopower and Nernst effect in the high magnetic field (CDW(x)) state.  相似文献   

16.
何兰坡  李世燕 《中国物理 B》2016,25(11):117105-117105
The discovery of the three-dimensional Dirac semimetals have expanded the family of topological materials,and attracted massive attentions in recent few years.In this short review,we briefly overview the quantum transport properties of a well-studied three-dimensional Dirac semimetal,Cd_3As_2.These unusual transport phenomena include the unexpected ultra-high charge mobility,large linear magnetoresistivity,remarkable Shubnikov-de Hass oscillations,and the evolution of the nontrivial Berry's phase.These quantum transport properties not only reflect the novel electronic structure of Dirac semimetals,but also give the possibilities for their future device applications.  相似文献   

17.
We theoretically predict the existence of tunneling valley Hall effect and Nernst effect in the normal/strain/normal graphene junctions, where a strained graphene is sandwiched by two normal graphene electrodes. By applying an electric bias a pure transverse valley Hall current with longitudinal charge current is generated. If the system is driven by a temperature bias, a valley Nernst effect is observed, where a pure transverse valley current without charge current propagates. Furthermore, the transverse valley current can be modulated by the Fermi energy and crystallographic orientation. When the magnetic field is further considered, we obtain a fully valley-polarized current. It is expected these features may be helpful in the design of the controllable valleytronic devices.  相似文献   

18.
We show that in the new topological-insulator compound Bi(1.5)Sb(0.5)Te(1.7)Se(1.3) one can achieve a surfaced-dominated transport where the surface channel contributes up to 70% of the total conductance. Furthermore, it was found that in this material the transport properties sharply reflect the time dependence of the surface chemical potential, presenting a sign change in the Hall coefficient with time. We demonstrate that such an evolution makes us observe both Dirac holes and electrons on the surface, which allows us to reconstruct the surface band dispersion across the Dirac point.  相似文献   

19.
Using the Kubo formula approach, we study the effect of electron interaction on thermal transport in the vicinity of a metal-insulator transition, with a granular metal as our model. For small values of dimensionless intergrain tunneling conductance, g<1, we find that the thermal conductivity surprisingly shows a phononlike algebraic decrease, kappa(T) approximately g2T3/E2c even though the electrical conductivity obeys an Arrhenius law, sigma(T) approximately ge-Ec/T ; therefore the Wiedemann-Franz (WF) law is seriously violated. We explicitly show that this violation arises from nonmagnetic bosonic excitations of low energy that transport heat but not charge. At large values of intergrain tunneling, we find it plausible that the WF law weakly deviates from the free-electron theory due to potential fluctuations. Implications for experiment are discussed.  相似文献   

20.
徐勇 《中国物理 B》2016,25(11):117309-117309
The recent discovery of topological insulators(TIs) offers new opportunities for the development of thermoelectrics,because many TIs(like Bi_2Te_3) are excellent thermoelectric(TE) materials.In this review,we will first describe the general TE properties of TIs and show that the coexistence of the bulk and boundary states in TIs introduces unusual TE properties,including strong size effects and an anomalous Seebeck effect.Importantly,the TE figure of merit zT of TIs is no longer an intrinsic property,but depends strongly on the geometric size.The geometric parameters of twodimensional TIs can be tuned to enhance zT to be significantly greater than 1.Then a few proof-of-principle experiments on three-dimensional TIs will be discussed,which observed unconventional TE phenomena that are closely related to the topological nature of the materials.However,current experiments indicate that the metallic surface states,if their advantage of high mobility is not fully utilized,would be detrimental to TE performance.Finally,we provide an outlook for future work on topological materials,which offers great possibilities to discover exotic TE effects and may lead to significant breakthroughs in improving zT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号