首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We observe that a mesoscopic field made of several tens of microwave photons exhibits quantum features when interacting with a single Rydberg atom in a high-Q cavity. The field is split into two components whose phases differ by an angle inversely proportional to the square root of the average photon number. The field and the atomic dipole are phase entangled. These manifestations of photon graininess vanish at the classical limit. This experiment opens the way to studies of large quantum state superpositions at the quantum-classical boundary.  相似文献   

2.
We study the interplay of photons interacting with an artificial atom in the presence of a controlled dephasing. Such artificial atoms consisting of several independent scatterers can exhibit remarkable properties superior to single atoms with a prominent example being a superatom based on Rydberg blockade. We demonstrate that the induced dephasing allows for the controlled absorption of a single photon from an arbitrary incoming probe field. This unique tool in photon-matter interaction opens a way for building novel quantum devices, and several potential applications such as a single photon transistor, high fidelity n-photon counters, or the creation of nonclassical states of light by photon subtraction are presented.  相似文献   

3.
We propose to apply stimulated adiabatic passage to transfer atoms from their ground state into Rydberg excited states. Atoms a few micrometers apart experience a dipole-dipole interaction among Rydberg states that is strong enough to shift the atomic resonance and inhibit excitation of more than a single atom. We show that the adiabatic passage in the presence of this interaction between two atoms leads to robust creation of maximally entangled states and to two-bit quantum gates. For many atoms, the excitation blockade leads to an effective implementation of collective-spin and Jaynes-Cummings-like Hamiltonians, and we show that the adiabatic passage can be used to generate collective J_{x}=0 eigenstates and Greenberger-Horne-Zeilinger states of tens of atoms.  相似文献   

4.
吴怀志  杨贞标  郑仕标 《中国物理 B》2012,21(4):40305-040305
The quantum swap gate is one of the most useful gates for quantum computation. Two-qubit entanglement and a controlled-NOT quantum gate in a neutral Rydberg atom system have been achieved in recent experiments. It is therefore very interesting to propose a scheme here for swapping a quantum state between two trapped neutral atoms via the Rydberg blockade mechanism. The atoms interact with a sequence of laser pulses without individual addressing. The errors of the swap gate due to imprecision of pulse length, finite Rydberg interaction, and atomic spontaneous emission are discussed.  相似文献   

5.
We show that pairs of atoms optically excited to the Rydberg states can strongly interact with each other via effective long-range dipole-dipole or van der Waals interactions mediated by their nonresonant coupling to a common microwave field mode of a superconducting coplanar waveguide cavity. These cavity mediated interactions can be employed to generate single photons and to realize in a scalable configuration a universal phase gate between pairs of single photon pulses propagating or stored in atomic ensembles in the regime of electromagnetically induced transparency.  相似文献   

6.
Combining adiabatic passage and Rydberg antiblockade, we propose a scheme to implement a two-qubit phase gate between two Rydberg atoms. Detuning parameters between frequencies of atomic transitions and those of the corresponding driving lasers are carefully chosen to offset the blockade effect of two Rydberg atoms, so that an effective Hamiltonian,representing a single-photon detuning L-type three-level system and concluding the quantum state of two Rydberg atoms excited simultaneously, is obtained. The adiabatic-passage technique, based on the effective Hamiltonian, is adopted to implement a two-atom phase gate by using two time-dependent Rabi frequencies. Numerical simulations indicate that a high-fidelity two-qubit p-phase gate is constructed and its operation time does not have to be controlled accurately. Besides,owing to the long coherence time of the Rydberg state, the phase gate is robust against atomic spontaneous emission.  相似文献   

7.
运用全量子理论并结合数值计算方法,研究了三个二能级原子系统的量子特性。初始三原子处于W纠缠态,让其中的两原子A、B与相干态光腔场发生共振作用,经腔QED演化以后,对原子进行Bell基测量,通过调节相干态光场的强度和原子间的偶极相互作用,来控制腔外原子C的布居差演化;对相干态光场进行光子探测,通过改变探测到的光子数、相干光场参量和原子间偶极相互作用,来控制腔外原子C的偶极压缩,最终实现了远程操纵腔外原子非经典特性的目的。  相似文献   

8.
严冬  王彬彬  白文杰  刘兵  杜秀国  任春年 《物理学报》2019,68(8):84203-084203
本文在典型的里德伯电磁感应透明系统中研究弱探测场在相互作用原子系统中的传播特性,重点关注基于偶极阻塞效应的探测场相位的合作光学非线性行为.通过与探测场透射率和光子关联作对比,发现相位的光学响应具有新特性:共振和Autler-Townes劈裂条件下相位对入射场强和初始光子关联不敏感,而在两者之间的频率范围内相位响应具有非线性特征,尤其在经典光频率处最显著.此外,提高主量子数和原子密度都会促进相位的非线性效应.综上,与探测场透射率和光子关联一样,相位可以作为合作光学非线性的另一个标识来刻画非线性现象,对里德伯电磁感应透明研究是一个有力的补充.  相似文献   

9.
许鹏  何晓东  刘敏  王谨  詹明生 《物理学报》2019,68(3):30305-030305
相互作用可控、相干时间较长的中性单原子体系具备在1 mm2的面积上提供成千上万个量子比特的规模化集成的优势,是进行量子模拟、实现量子计算的有力候选者.近几年中性单原子体系在实验上取得了快速的发展,完成了包括50个单原子的确定性装载、二维和三维阵列中单个原子的寻址和操控、量子比特相干时间的延长、基于里德伯态的两比特量子门的实现和原子态的高效读出等,这些工作极大地推动了该体系在量子模拟和量子计算方面的应用.本文综述了该体系在量子计算方面的研究进展,并介绍了我们在其中所做的两个贡献:一是实现了"魔幻强度光阱",克服了光阱中原子退相干的首要因素,将原子相干时间提高了百倍,使得相干时间与比特操作时间的比值高达105;二是利用异核原子共振频率的差异建立了低串扰的异核单原子体系,并利用里德伯阻塞效应首次实现了异核两原子的量子受控非门和量子纠缠,将量子计算的实验研究拓展至异核领域.最后,分析了中性单原子体系在量子模拟和量子计算方面进一步发展面临的挑战与瓶颈.  相似文献   

10.
We propose a method to prepare multipartite entangled states such as cluster states and graph states based on the cavity input-output process and single photon measurement. Two quantum gates, a controlled phase gate and a fusion gate between two atoms trapped in respective cavities, are proposed to prepare atomic cluster states and graph states with one and two dimensions. We also introduce a scheme that can generate an arbitrary multipartite photon duster state which uses two coherent states as a qubit basis.  相似文献   

11.
We propose a scheme for generating high fidelity three-dimensional entangled state for two atomic ensembles in spatially separated cavities coupled by an optical fiber. By employing multiple atoms in a cavity and resonant interaction between atoms and photons, the interaction time can be shortened greatly. Furthermore, we study the effects of spontaneous emission of atoms and photon leakage.  相似文献   

12.
邓黎  陈爱喜  张建松 《中国物理 B》2011,20(11):110304-110304
We provide a scheme with which the transfer of the entangled state and the entanglement swapping can be realized in a system of neutral atoms via the Rydberg blockade. Our idea can be extended to teleport an unknown atomic state. According to the latest theoretical research of the Rydberg excitation and experimental reports of the Rydberg blockade effect in quantum information processing, we discuss the experimental feasibility of our scheme.  相似文献   

13.
Multiqubit CCZ gates form one of the building blocks of quantum algorithms and have been involved in achieving many theoretical and experimental triumphs. Designing a simple and efficient multiqubit gate for quantum algorithms is still by no means trivial as the number of qubits increases. Here, by virtue of the Rydberg blockade effect, we propose a scheme to rapidly implement a three-Rydberg-atom CCZ gate via a single Rydberg pulse, and successfully apply the gate to realize the three-qubit refined Deutsch–Jozsa algorithm and three-qubit Grover search. The logical states of the three-qubit gate are encoded to the same ground states to avoid an adverse effect of the atomic spontaneous emission. Furthermore, there is no requirement for individual addressing of atoms in our protocol.  相似文献   

14.
The dipole blockade effect at laser excitation of mesoscopic ensembles of Rydberg atoms lies in the fact that the excitation of one atom to a Rydberg state blocks the excitation of other atoms due to the shift in the collective energy levels of interacting Rydberg atoms. It is used to obtain the entangled qubit states based on single neutral atoms in optical traps. In this paper, we present our experimental results on the observation of the dipole blockade for mesoscopic ensembles of 1–5 atoms when they are detected by the selective field ionization method. We have investigated the spectra of the three-photon laser excitation 5S1/2 → 5P3/2 → 6S1/2 → nP3/2 of cold Rydberg Rb atoms in a magneto-optical trap. We have found that for mesoscopic ensembles this method allows only a partial dipole blockage to be observed. This is most likely related to the presence of parasitic electric fields reducing the interaction energy of Rydberg atoms, the decrease in the probability of detecting high states, and the strong angular dependence of the interaction energy of Rydberg atoms in a single interaction volume.  相似文献   

15.
张秦榕  王彬彬  张孟龙  严冬 《物理学报》2018,67(3):34202-034202
量子纠缠是量子信息处理和量子计算中不可或缺的物理资源,制备稳定可操控的量子纠缠是研究的热点之一.里德伯原子具有不同于普通中性原子的特点,长寿命和原子之间强烈的偶极相互作用,使得它成为量子信息处理和量子计算的最优候选者.本文在稀薄里德伯原子气体中,构建了空间四面体排布的里德伯原子模型(空间等距的四个原子模型),通过数值求解主方程来研究两体纠缠和里德伯激发的稳态和瞬态动力学性质,发现偶极阻塞机制下的量子纠缠最大,其他满足反偶极阻塞条件的高阶激发引起的纠缠较小,进而从理论上分析了这两种机制下量子纠缠的物理实质.  相似文献   

16.
We create independent, synchronized single-photon sources with built-in quantum memory based on two remote cold atomic ensembles. The synchronized single photons are used to demonstrate efficient generation of entanglement. The resulting entangled photon pairs violate a Bell's inequality by 5 standard deviations. Our synchronized single photons with their long coherence time of 25 ns and the efficient creation of entanglement serve as an ideal building block for scalable linear optical quantum information processing.  相似文献   

17.
We propose a method to generate the multi-mode entangled catalysis squeezed vacuum states (MECSVS) by embedding the cross-Kerr nonlinear medium into the Mach−Zehnder interferometer. This method realizes the exchange of quantum states between different modes based on Fredkin gate. In addition, we study the MECSVS as the probe state of multi-arm optical interferometer to realize multi-phase simultaneous estimation. The results show that the quantum Cramer−Rao bound (QCRB) of phase estimation can be improved by increasing the number of catalytic photons or decreasing the transmissivity of the optical beam splitter using for photon catalysis. In addition, we also show that even if there is photon loss, the QCRB of our photon catalysis scheme is lower than that of the ideal entangled squeezed vacuum states (ESVS), which shows that by performing the photon catalytic operation is more robust against photon loss than that without the catalytic operation. The results here can find applications in quantum metrology for multiparatmeter estimation.  相似文献   

18.
利用全量子理论,研究了多光子跃迁过程高斯型耦合Tavis-Cummings模型中场与原子的纠缠特性。讨论了多光子原子运动速度、光场初态的平均光子数及跃迁光子数对场与原子之间纠缠特性的影响。结果表明:原子运动速度的变化改变了场熵演化曲线的振荡时域;光场初态影响场熵演化曲线的周期性;跃迁光子数的增加使场熵演化曲线的振荡频率和场与原子之间的平均纠缠度变大。  相似文献   

19.
利用全量子理论研究了克尔介质中皮秒孤子光场与二能级原子多光子相互作用系统中粒子数反转随时间的变化特性,用MATLAB软件编程模拟并讨论了初始平均光子数、克尔介质与场模非线性相互作用强弱、孤子光场与原子耦合强度及相互作用过程中跃迁光子数目对粒子数反转的影响.数值计算结果表明:初始平均光子数越大、克尔介质与场模的非线性相互作用越强、孤子光场与原子耦合强度越小或相互作用过程中跃迁光子数目越多,粒子数反转崩坍与恢复的振荡幅度越小、平均值越大.  相似文献   

20.
利用全量子理论的方法,研究了存在相位退相干时多光子T-C模型中两个二能级原子与二项式光场相互作用系统中两原子的布居数反转。讨论了相位退相干系数、二项式光场系数、最大光子数、跃迁光子数对原子布居数反转的影响。结果表明:相位退相干减少了原子布居数反转的振幅、破坏了原子的量子特性。改变跃迁光子数,可以改变原子间布居数反转演化周期及演化强度。当二项式光场的最大光子数增大时,原子布居差的崩塌-回复现象就会逐渐消失。相位退相干因子不变时, 二项式光场从相干态过渡到数态过程中,原子布居的振荡频率由大变小,周期性的崩塌与回复现象逐渐消失。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号