首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The molecular structure of 6-(N,N-dimethylamino)fulvene was studied by gas-phase electron diffraction and quantum-chemical methods (HF/6-31G(d), MP2/3Z, MP2/4Z, density functional theory with the B3LYP/6-31G(d) and PBE/3Z functionals). Pronounced flattening of the nitrogen atom and equalization of the intracyclic C—C bonds were found to be a consequence of the electron delocalization in the molecule.  相似文献   

2.
The molecular structure of ortho-fluoronitrobenzene (o-FNB) has been investigated by gas-phase electron diffraction and ab initio MO calculations. The geometrical parameters and force fields of o-FNB were calculated by ab initio and DFT methods. The obtained force fields were used to calculate vibrational amplitudes required as input parameters in an electron diffraction analysis. Within the experimental error limits, the geometrical parameters obtained from the gas-phase electron diffraction analysis are mostly in agreement with the results obtained from the ab initio calculations. The main results are: the molecular geometry of o-FNB is nonplanar with a dihedral angle about C–N of 38(3)°. The r g (C–F) bond is shortened to 1.307(13) Å in comparison with r g (C–F) = 1.356(4) Å in C6H5F.  相似文献   

3.
The geometrical structure and conformation of dimethyloxalate, CH3OC(O)–C(O)OCH3, have been studied by gas electron diffraction (GED) and quantum-chemical calculations (MP2 and B3LYP methods with 6-31G* and cc-pVTZ basis sets). The GED analysis with a dynamic model (T = 323 K) results in a mixture of two planar conformers, anti (C2h symmetry) and syn (C2v symmetry) orientation of the two C=O bonds. The energy difference between these conformers is 0.02(0.18) kcal/mol and barrier to internal rotation around the C–C bond is 0.44(0.41) kcal/mol. The CH3 groups occupy synperiplanar positions with respect to the C=O bonds. The following main geometrical parameters for the anti conformer (Å and degrees) have been derived: rg(C–C) = 1.532(3), rg(C=O) = 1.203(2), rg(Csp3–O) = 1.436(3), rg(Csp2–O) = 1.333(3), (Csp2–Csp2–O) = 111.9(1.9), (Csp2–O–Csp3) = 116.3(1.6), (O–C= O) = 127.0(1.8).This paper is devoted to the 75th anniversary of gas electron diffraction method.  相似文献   

4.
The geometry of silatrane HSi(OCH2CH2)3N has been determined by gas electron diffraction, ab initio calculations, and vibrational spectroscopy of crystal. Using the scaled force field from DFT calculations the amplitudes and perpendicular corrections were calculated. It was assumed that the silatrane molecule has C 3 symmetry. The following values (r g bond lengths in Å and a bond angles in deg. with three standard deviations from the least-squared refinements using a diagonal weight matrix) are: SiN 2.406(27); NC 1.443(7); OC 1.399(11); SiO 1.648(3); CC 1.504(15); NSiO 78.8(21); SiOC 128.1(11); SiNC 105.4(14); CCO 117.0(26); CCN 108.2(30); CNC 113.2(17); OSiO 116.3(13). The 5-membered rings are flattened. The sum of its bond angles is equal to 537.5(42). It is shown that a very large difference is found for Si—N distance from ab initio and DFT calculating.  相似文献   

5.
The electronic structures and energies of formation of supramolecular complexes of dipyridylethylene with AgNO3 were calculated by the semiempirical AM1/d method, at the Hartree—Fock level, and by the density functional theory (B3LYP/6-31G*).  相似文献   

6.
7.
The structure of the peroxyacetic acid (PAA) molecule and its conformational mobility under rotation about the peroxide bond was studied by ab initio and density functional methods. The free rotation is hindered by the trans-barrier of height 22.3 kJ mol–1. The equilibrium molecular structure of AcOOH (C s symmetry) is a result of intramolecular hydrogen bond. The high energy of hydrogen bonding (46 kJ mol–1 according to natural bonding orbital analysis) hampers formation of intermolecular associates of AcOOH in the gas and liquid phases. The standard enthalpies of formation for AcOOH (–353.2 kJ mol–1) and products of radical decomposition of the peroxide — AcO· (–190.2 kJ mol–1) and AcOO· (–153.4 kJ mol–1) — were determined by the G2 and G2(MP2) composite methods. The O—H and O—O bonds in the PAA molecule (bond energies are 417.8 and 202.3 kJ mol–1, respectively) are much stronger than in alkyl hydroperoxide molecules. This provides an explanation for substantial contribution of non-radical channels of the decomposition of peroxyacetic acid. The electron density distribution and gas-phase acidity of PAA were determined. The transition states of the ethylene and cyclohexene epoxidation reactions were located (E a = 71.7 and 50.9 kJ mol–1 respectively).  相似文献   

8.
Geometric parameters and force fields of two stable isomers of dimethylaminodichlorophosphine molecule, a gauche-conformer with C1 symmetry (A) and anti-conformer with C s symmetry (D), resulting from internal rotation about the P—N bond, were calculated in the RHF/6-31G* approximation. Using the scaled quantum-chemical force field for the most stable conformer A, the first reliable interpretation of the vibrational spectra of the light and perdeuterated isotopomers of dimethylaminodichlorophosphine was obtained. The root-mean-square vibrational amplitudes, harmonic and anharmonic vibrational corrections, and centrifugal distortion corrections were also calculated. Structural analysis of electron diffraction data was performed with consideration of nonlinear kinematic effects at the first-order level of perturbation theory. The experimental values of the equilibrium geometric parameters were estimated. The results obtained suggest a nonplanar equilibrium configuration of the amino group in the dimethylaminodichlorophosphine molecule.  相似文献   

9.
This paper reports on our quantum-chemical analysis of the nucleophilic substitution of the bromine atom by the cyano group in the reaction of methylbromoacetylene with copper cyanide. According to calculations, the reaction can form a four-membered ring containing a copper atom.  相似文献   

10.
The geometry and force fields of the bis(trimethylstannyl)acetylene molecule (a conformer withD 3d symmetry corresponding to a minimum of the total energy of the molecule) were calculated by the RHF and MP2(fc) methods. The effective core potential in SBK form with the optimized 31G* valence basis set was employed in the case of Sn atoms. The 6–31G** and 6–311G** basis sets were used for carbon and hydrogen atoms. Vibrational spectra of the light and perdeuterated isotopomers of bis(trimethylstannyl)acetylene were interpreted using the procedure of scaling the quantum-chemical force fields. For Part 5, see Ref. 1. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 616–626, April, 2000.  相似文献   

11.
The proton transfer and the character of the strong intramolecular O--H...O hydrogen bond (O...O 2.442 ) in 3-acetyl-4-hydroxycoumarin were analyzed based on the results of X-ray diffraction study in the temperature range from 100 to 353 K and quantum-chemical B3LYP/6-31G(d,p) calculations. The barrier to proton transfer along the H-bond line is low (2 kcal mol–1). However, no proton transfer was observed in the crystal at 100 K. Bader's topological analysis of the electron density distribution both in the crystal and in the isolated molecule demonstrated that the hydrogen bond corresponds to an intermediate type of interatomic interactions (E(r) < 0, 2(r) > 0 at the critical point (3, –1)).  相似文献   

12.
The high resolution X-ray emission O-Kα spectra of pentafluorophenylalkyl ethers C6F5OR (R=Et, Pri, and But) exhibit differences related to a change in the electronic structure of the compounds as R is varied. The search for stable conformers was performed by the semiempirical PM3 method. The most probable structures of C6F5OR were determined by the comparison of the experimental and theoretical X-ray spectra plotted for each conformer usingab initio calculations in the 6–31 G basis set. Substituent R in pentafluorophenylalkyl ethers is situated outside of the ring plane. The fluorination of the benzene ring changes the energy level of the lone electron pair of oxygen relative to the levels of orbitals of the ring and substituent R and leads to an increase in the efficiency of interactions in the σ-system. Deceased. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2443–2450, December, 1998.  相似文献   

13.
The saturated vapor over LaI3 has been studied using the electron diffraction method with mass-spectral monitoring. It was determined that at a temperature 1142(10) K, along with monomer molecules, dimers are present in the vapor in the quantity of 0.7 mol.%. Effective configuration parameters of LaI3 molecule were obtained: r g(La-I) 2.961(6) Å, ∠g(I-La-I) 116.5(9)°, l(La-I) 0.106(1) Å and l(I…I) 0.412(7) Å. A small deviation of the valence angle ∠g(I-L-I) from 120° can be totally caused by a contraction effect of the distance r g(I…I) of LaI3 molecule with planar equilibrium configuration. The electronic structure of LaI3 molecule was examined by the B3LYP/SDD method. In terms of the NBO-analysis, the participation of lanthanum 4f-AO in bonding orbitals La-I is noted. It is shown that the NBO-analysis describes the bond La-I in LaI3 molecule as predominantly ionic one with a noticeable covalence component. The energy of the heterolytic bond breakage E(La-I)het = 1216 kJ/mole was calculated.  相似文献   

14.
The molecular structure and conformational mobility of methyl and tert-butyl esters of peracetic acid AcOOR (R = Me (1), But (2)) were studied by the ab initio MP4(SDQ)//MP2(FC)/6-31G(d,p) method and density functional B3LYP/6-31G(d,p) approach. The B3LYP calculated equilibrium conformations of the molecules are characterized by the C-O-O-C torsion angles of 93.6° (1) and 117.0° (2). Structural features of the molecules under study and a distortion of tetrahedral bond configuration at the Cα atom were explained using the natural bonding orbital approach. The standard enthalpies of formation of AcOOMe (−328.5 kJ mol−1) and AcOOBut (−440.4 kJ mol−1) were determined using the G2 and G2(MP2) computational schemes and the isodesmic reaction approach. The transition state of AcOOMe decomposition into AcOOH and formaldehyde was calculated (E a = 122.8 kJ mol−1). The thermal effects of homolytic decomposition of the peroxy esters following a concerted mechanism (Me· + CO2 + ·OR) and simple homolysis of the peroxide bond (AcO· + ·OR) were found to be 97.5±0.3 and 155.1±0.3 kJ mol−1, respectively. At temperatures below 400 K, the most probable decomposition mechanism of peroxy esters 1 and 2 involves simple homolysis of the O-O bond.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 2021–2027, October, 2004.  相似文献   

15.
The electronic structure and reactivity of some S—S dications were studied at the MP2/6-31G* level of theory. The results obtained indicate a stepwise electrophilic addition of disulfonium dication moiety to the double C=C bond to be the preferable mechanism.  相似文献   

16.
The molecular structure of N-chlorosuccinimide has been studied by GED method at the nozzle temperature of 116 °C. Vibrational corrections to the r a parameters, Δ(r a − r e), have been calculated using the scaled quadratic and cubic force constants from B3LYP/6-31G(df,p) calculations. The force field scaling has been carried out using the IR and Raman spectra of the solid N-chlorosuccinimide. The molecular skeleton and the bond conformation around nitrogen were found to be planar within large experimental errors. The equilibrium geometrical parameters derived from the experimental data assuming C 2v molecular symmetry and those from MP2(fc)/6-311G(3df,2pd) calculations are in a good agreement.  相似文献   

17.
The potential energy profile of an isolated CF2ClCOOH molecule with a CF2Cl group rotating around the C–C bond was determined by the Hartree–Fock method using the 6-31G(d) basis set. Barriers to internal rotation were estimated for this molecule; its geometrical parameters were found for the equilibrium and transition states that are due to the torsion potential with unequal wells. Crystal effect on CF2Cl reorientations in solid chlorodifluoroacetic acid has been evaluated.  相似文献   

18.
Gas electron diffraction data are applied to determine the geometrical parameters of the octamethylcyclotetrasilane molecule using a dynamic model in which the ring puckering is treated as a large amplitude motion. The structural parameters and parameters of the potential function were refined, taking into account the relaxation of the molecular geometry estimated from ab initio calculations at the Hartree–Fock level of theory using a 6-311G** basis set. The potential function has been described as V() = V 0[(/ e )2 – 1]2 with V 0 = 1.0 ± 0.5 kcal/mol and e = 28.3 ± 1.9°, where is the puckering angle of the ring. The geometric parameters at the minimum of V() (r a in Å, in degrees and errors given as three times the standard deviations including a scale error) are as follows: r(Si—C)av = 1.894(3), r(Si—Si) = 2.363(3), r(C—H) = 1.104(3), CSiC = 109.5(6), SiSiSi = 88.2(2), SiCH = 111.7(6), C = 4.1, where the tilt C was estimated from ab initio constraints. The structural parameters are compared with those obtained for related compounds.  相似文献   

19.
The results of an electron diffraction reanalysis, augmented with a combined electron diffraction and vibrational spectroscopic elucidation, of the molecular structure of BiCl3 are reported. The principal parameters arer g (Bi-Cl)=2.424±0.005 å (r =2.417±0.005 å) and <Cl-Bi-Cl=97.5±0.2. They are in excellent agreement with previous electron diffraction analysis [1], utilizing a more limited data range from the same experiment. They are also fully consistent with the expected trends of geometrical variation in the Group V trihalide series. The force fields of BiCl3, determined by normal coordinate analysis and by combined analysis, agree within experimental error.  相似文献   

20.
The molecular and electronic structure of the ground state of peroxyacetyl nitrate (PAN) was calculated by the unrestricted Hartree-Fock-Roothaan method with the use of the standard 3–21G and 6–31G basis set. The potential curve of the internal rotation about the peroxide bond of PAN was calculated with the 6–31G basis set. The curve contains two maxima. The ground state of PAN is characterized by a structure in which groups of atoms adjacent to the peroxide bond lie in planes that are perpendicular to each other (the dihedral angle ϱ(COON) is 89.9°). The calculated barriers to rotation are 19.6 and 66.8 kJ mol−1. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 600–604, April, 1998.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号