首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The oxidation of copper in basic media has been studied by in situ second harmonic generation (SHG), where the SHG signal was recorded alongside the cyclic voltammogram. The SHG signal changes markedly as the copper surface is oxidised to first Cu2O and then CuO in a duplex structure. The development of Cu2O gives rise to a resonant SHG signal because of the band-gap of the material then the upper CuO layer produces an electric-field induced second harmonic (EFISH) response. A correlation of charge with the SHG signal is informative with regard to the mechanism of reduction of CuO and SHG is shown to be a useful method for the examination of oxidation of electrode surfaces.  相似文献   

2.
We performed polarization-resolved surface second harmonic generation (SHG) experiments on thin films of collagen I and IV molecules, as well as conventional CD measurements. We found that collagen IV presents little CD and no SHG optical activity, whereas collagen I exhibits large chiroptical effects involving both one-electron and excitonic coupling mechanisms. We estimated that these chiral components enhance the SHG signal from fibrillar collagen in biological tissues by typically a factor of 2. By comparing the distinct behaviors of collagens I and IV in SHG microscopy and in surface SHG experiments, we concluded that SHG microscopy is a sensitive probe of the micrometer-scale structural organization of collagen in biological tissues.  相似文献   

3.
The second harmonic generation (SHG) in the ferroelectric liquid crystal (FLC) state has been studied as functions of electric field strength, rotating angle, temperature and molecular structure. It has been confirmed that a sharp angularly phase-matching curve of the SHG controlled by an electric field is observed even in the liquid crystal. The temperature dependences of the phase-matched SHG and Maker fringe in the ferroelectric phase have also been studied, and temperature dependences of non-linear optical coefficients obtained. The SHG in several kinds of FLC and dye doped FLC have also been measured, and the enhancement of SHG realized by means of doping the FLC with several kinds of dye.  相似文献   

4.
Polar order in the phosphonium liquid crystal thin films, which are composed of two-dimensional ion-pair-based domains separated by the insulating hydrocarbon layers, was probed by second harmonic generation (SHG) analysis. Despite the ordinary amphiphilic self-assemblies containing no pi-electron moieties, the solid-state thin films retaining a smectic layer structure showed clearly an SHG activity, while the disordered films without the layer structure were not active at all for the SHG. It was found that the multilayer structure plays a crucial role for the SHG from the phosphonium thin films and the ionic layers act as an SHG-active site. The most significant characteristic of this system is to possess an ability to control SHG intensity electrically. The efficiency of the SHG process in the thin-film assemblies was enhanced by applying an external electric field parallel to the layer plane. Furthermore, through evaluation of thermal stability of the sample films, it was revealed that the SHG signals were detected only in the solid-state temperature range and the disappearance of the SHG occurs earlier than the solid-to-liquid crystalline phase transition. These results demonstrated that the origin of polar order in the phosphonium thin films is due to in-plane noncentrosymmetric arrangement (ferroelectric ordering) of ion pairs as an electric dipole, that is, dipole symmetry in an ionic layer.  相似文献   

5.
Abstract

The second harmonic generation (SHG) in the ferroelectric liquid crystal (FLC) state has been studied as functions of electric field strength, rotating angle, temperature and molecular structure. It has been confirmed that a sharp angularly phase-matching curve of the SHG controlled by an electric field is observed even in the liquid crystal. The temperature dependences of the phase-matched SHG and Maker fringe in the ferroelectric phase have also been studied, and temperature dependences of non-linear optical coefficients obtained. The SHG in several kinds of FLC and dye doped FLC have also been measured, and the enhancement of SHG realized by means of doping the FLC with several kinds of dye.  相似文献   

6.
In situ optical second harmonic generation (SHG) technique was employed to investigate the shape and density of Cu nanoclusters, which were electrochemically formed on p-GaAs(001) electrode surfaces. Since GaAs is not a centrosymmetric medium, a significant portion of SHG signal arises from the bulk dipole susceptibility, but it was possible to separate a surface-induced signal from a bulk-induced signal by choosing an appropriate experimental geometry and appropriate data processing. The rotational anisotropy (RA) pattern of the SHG signal from a p-GaAs(001) electrode changed in both shape and magnitude during potential cycling in an electrolyte solution containing Cu2+. The surface plasmon-induced SHG signal from Cu nanoclusters deposited on GaAs was attributed to the modulation source for the RA-SHG pattern. More detailed study was carried out with both in situ SHG and ex situ AFM measurements for Cu nanoclusters deposited by potential step. The results showed that the SHG signal at the present optical geometry was sensitive to the number of oblate or flattened Cu nanoclusters with lateral diameter larger than 30 nm and that the SHG enhancement occurred because of resonant coupling between the surface plasmon induced in the flattened Cu nanoclusters and the near-infrared fundamental light.  相似文献   

7.
Second harmonic generation (SHG) imaging using near infrared laser light is the key to improving penetration depths, leading to biological understanding. Unfortunately, currently SHG imaging techniques have limited capability due to the poor signal‐to‐noise ratio, resulting from the low SHG efficiency of available dyes. Targeted tumor imaging over nontargeted tissues is also a challenge that needs to be overcome. Driven by this need, in this study, the development of two‐photon SHG imaging of live cancer cell lines selectively by enhancement of the nonlinear optical response of gold nanocage assemblies is reported. Experimental results show that two‐photon scattering intensity can be increased by few orders of magnitude by just developing nanoparticle self‐assembly. Theoretical modeling indicates that the field enhancement values for the nanocage assemblies can explain, in part, the enhanced nonlinear optical properties. Our experimental data also show that A9 RNA aptamer conjugated gold nanocage assemblies can be used for targeted SHG imaging of the LNCaP prostate cancer cell line. Experimental results with the HaCaT normal skin cell lines show that bioconjugated nanocage‐based assemblies demonstrate SHG imaging that is highly selective and will be able to distinguish targeted cancer cell lines from other nontargeted cell types. After optimization, this reported SHG imaging assay could have considerable application for biology.  相似文献   

8.
Second harmonic generation (SHG) has been proven a uniquely effective technique in the investigation of molecular structure and conformations, as well as dynamics of molecular interfaces. The ability to apply SHG to molecular interface studies depends on the ability to abstract quantitative information from the measurable quantities in the actual SHG experiments. In this review, we try to assess recent developments in the SHG experimental methodologies towards quantitative analysis of the nonlinear optical properties of the achiral molecular interfaces with rotational isotropy along the interface normal. These developments include the methodology for orientational analysis of the SHG experimental data, the experimental approaches for more accurate SHG measurements, and a novel treatment of the symmetry properties of the molecular polarizability tensors in association with the experimentally measurable quantities. In the end, the recent developments on the problem of surface versus bulk contribution in SHG surface studies is discussed. These developments can put SHG on a more solid foundation for molecular interface studies, and to pave the way for better understanding and application of SHG surface studies in general.  相似文献   

9.
Second harmonic generation (SHG) in three corona-poled, pure, bulk polymers is studied as a function of temperature. It is found that this technique readily yields dynamical information that is complementary to that obtained from the technique of dielectric relaxation (DR). The SHG results are compared to those from DR in the same temperature ranges above Tg. It is found that in the temperature ranges examined, the relaxation times obtained from SHG are several orders fo magnitude longer than those measured by dielectric relaxation. This is explained as being due to the strong correlation between oriented dipoles and to trapped charges injected by the poling process. Fitting measured data to the Williams-Landau-Ferry (WLF) equation indicates that more free volume is needed in SHG for dipolar reorientation than is needed in DR. An SHG relaxation elongation phenomenon at constant temperature is found to occur in the pure bulk polymers and is similar to that found in chromophore-doped polymers previously studied. The SHG technique is developed as a new tool to directly study the reorientational dynamics of polar polymer segments. © 1994 John Wiley & Sons, Inc.  相似文献   

10.
The electrochemical oxidation of p-type Si in fluoride solutions has been studied by in situ second harmonic generation (SHG) with the SHG signal being recorded simultaneously with the cyclic voltammogram. The SHG signal is shown to change in tandem with the electrochemical response enabling the identification of transition points between different surface conditions such as hydrogen-terminated, hydrated oxide and oxide. Interpretation of the changes in SHG suggests that the initial response is due to the electric field-induced second harmonic (EFISH) due to the electric field gradient at the interface. It then becomes dominated by the variation in the resonant surface non-linear susceptibility as the changes in local bonding affect the response. SHG signals display a much greater sensitivity to surface conditions than the voltammetric response and allow the real-time identification of the potentials at which significant changes take place in the state of the surface.  相似文献   

11.
With polarization dependent second harmonic generation (SHG) microscopy becoming a more popular method for investigating the structure of biological materials, there is a need to develop tools with which to understand and interpret the observed SHG properties. Quantum mechanical calculations of the hyperpolarizability tensor have become a popular method for understanding the SHG properties of biomolecules. Visualization of the full hyperpolarizability tensor, termed the unit sphere representation, has been developed to provide insight and intuition on the relationship between SHG properties and molecules. A single vector representation is also presented, which approximates the SHG properties of molecules for certain cases, where the anisotropy is negligible.  相似文献   

12.
首次用激光产生的第二谐振光(SHG)检测到金属/水溶液界面上阴离子在多晶铜电极表面上的吸附,阴离子吸附特性对SHG强度影响明显,由多晶铜电极在(0.5-x)mol/L NaClO_4+xmol/L NaBr溶液中的SHG强度-电位曲线表明铜电极表面对ClO_4~-的吸附非常弱,对Br~-有特定的吸附,SHG强度随Br~-浓度增加而增强,结果表明SHG是定量研究电化学界面区吸附特性的灵敏有效的探针,可揭示金属与吸附质间相互作用的本质。  相似文献   

13.
In a ferroelectric liquid crystal, a special type of phase-matching for optical second harmonic generation (SHG) is possible, where two counter-propagating fundamental waves create second harmonic waves at the edge of the selective reflection band. We compute the SHG intensity in such a situation and show that, at slight detuning from exact phase-matching, useful resonance enhancement can be obtained. A considerable amount of SHG also appears when the second harmonic frequency is in the reflection band, where the SHG wave is non-propagating.  相似文献   

14.
Chirality can produce novel nonlinear optical effects that may form the basis for new imaging contrast agents. In this paper, we developed a new chiral chromophore 2, which is the dimer of a known voltage sensitive dye, monomer 1, with the chirality originating from the twisted orientation between two subunits. Racemic dimer and monomer 1 were used as the references to study the effect of chirality in SHG microscopy of live cells. All these dyes selectively stain the outer leaflets of cell membranes, producing strong resonance-enhanced SHG images. At the symmetric junction between two adherent cells, monomer or racemic dimer SHG is forbidden due to centrosymmetry, and indeed little SHG was observed (10 +/- 1% relative to nonjunction). When stained with the chiral dimer, the junction is no longer centrosymmetric and much stronger SHG was observed (39 +/- 4% relative to nonjunction). Plane polarized light produces highly polarized images of spherical cells stained with racemic dye, but for the chiral dye, the polarized pattern is largely eliminated by the chiral SHG emanating from the subresolution membrane convolutions.  相似文献   

15.
As one of the most primitive nonlinear optical phenomena, optical second harmonic genera-tion (SHG) has been investigated for half a century and it has become a very useful spectroscopic tool in the study of surface and interface[1—3]. It was theoretically shown that the SH signal cannot be generated in a centrosymmetric system. However, the generation of SH signal from the centro-symmetric molecules such as fullerene (C60) and CuPc has been detected[4—7]. In our recent ex-periments, an …  相似文献   

16.
This paper deals with relations between solvent diffusion and changes in second harmonic generation (SHG) in a side-group polymer with nonlinear optical (NLO) chromophores. The SHG signal of poled polymer thin films was measured as a function of time during the swelling process with methanol. The results indicated that the diffusion process was Fickian. The topographic results obtained by atomic force microscopy, together with the SHG data, also demonstrated the existence of the domain layer formed during poling that gave rise to the principal SHG intensity for this sample. Also, a noncentrosymmetric chromophore ordering was induced by swelling in the absence of a poling electric field. This time-varying SHG signal upon swelling was discussed in terms of dipolar and polar alignments of the side-group NLO chromophores. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 3108–3114, 1999  相似文献   

17.
设计合成了三种具有不同主链化学结构的二阶非线性光学功能化环氧聚合物,并对其化学结构进行了表征,考察了聚合物近程结构对材料极化后二次谐波产生弛豫特性的影响。极化后线型聚合物链节的扭转弹性回复是二次谐波产生弛豫的主要原因,在温度处于Tg 以下或Tg 附近时玻璃化转变温度的高低决定了二次谐波产生弛豫的快慢;聚合物交联后有助于提高二次谐波产生的稳定性,但此时聚合物单个链节结构的柔顺性成为影响二次谐波产生弛豫的主要原因,刚性越大,材料将具有更稳定的二次谐波产生性能。极化聚合物的二次谐波产生弛豫过程非常复杂,需要综合考虑聚合物材料的近程和远程结构因素。  相似文献   

18.
In this work, we report an investigation based on silver electrodeposition from water–acetonitrile mixed solvents onto a polycrystalline Au electrode, based on in situ optical second harmonic generation (SHG) spectroscopy. This paper is the last one of a series attacking the same topic by cyclic voltammetry and potentiostatic current transients (Mele et al., J Solid State Electrochem in press, 1) and in situ surface-enhanced Raman scattering (Mele et al., J Solid State Electrochem in press, 2). SHG intensity transients following the application of potentiostatic cathodic steps have been measured in order to obtain detailed information on the formation of Ag clusters and nuclei during the electrodeposition process. Our SHG data have been rationalised in terms of a simple optical model accounting for SHG enhancement brought about by Ag cluster formation.  相似文献   

19.
An achiral nonlinear optical chromophore with a "remote functionality" that can act as a ligand is developed on the basis of 4-nitroaniline derivatized with pyridine. The molecules are assembled through complexation with simple achiral zinc(II) salts and the H-bond network mediated by the counterions, to generate noncentrosymmetric materials exhibiting optical second harmonic generation (SHG). The crystal structures of the new complexes are determined; the counterion strongly influences the ligand orientations and lattice structure. SHG of the microcrystalline materials is investigated. Correlation between the structure and SHG is rationalized using semiempirical quantum chemical estimation of the hyperpolarizabilities of molecules and molecular clusters. The metal complexation plays a significant role in molecular assembly but affects the SHG very little, enabling simplified analysis of the bulk property in terms of molecular responses. Organization of remote functionalized molecules by metal ion complexation thus offers a convenient approach to the rational design of quadratic NLO materials.  相似文献   

20.
We have investigated linear and nonlinear optical properties of surface immobilized gold nanospheres (SIGNs) above a gold surface with a gap distance of a few nanometers. The nanogap was supported by amine or merocyanine terminated self-assembled monolayers (SAMs) of alkanethiolates. A large second-harmonic generation (SHG) was observed from the SIGN systems at localized surface plasmon resonance condition. The maximum enhancement factor of SHG intensity was found to be 3 x 10(5) for the SIGN system of nanospheres 100 nm in diameter with a gap distance of 0.8 nm. The corresponding susceptibility was estimated to be chi((2))=750 pmV (1.8 x 10(-6) esu). In the SIGN system supported with the merocyanine terminated SAMs, the SHG response was also resonant to the merocyanine in the nanogap. It was found that the SHG response of the SIGN systems is strongly frequency dependent. This leads us to conclude that the large chi((2)) is caused by enhanced electric fields at the localized surface plasmon resonance condition and is not due to an increase of the surface susceptibility following from the presence of the gold nanospheres. The observed SHG was consistent with the theoretical calculations involving Fresnel correction factors, based on the quasistatic approximation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号