首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Single terrylene molecules doped into linear low-density polyethylene can be oriented by tensile deformation of the matrix. In measurements on ensembles at ambient and on single terrylene molecules at cryogenic temperature, strong orientation along the stretching direction was observed by polarization-resolved confocal microscopy. At cryogenic temperatures narrow and spectrally stable zero-phonon lines were found. The low saturation intensity of 0.07 W cm(-2) is consistent with an uniaxial orientation of terrylene in the sample plane.  相似文献   

3.
The photophysical properties of three new water‐soluble terrylenediimide (WS‐TDI) derivatives are investigated and their utilization in biological experiments is demonstrated. Each of these dyes can be excited in the far red region of the visible spectrum, making them good candidates for in‐vivo studies. Single‐molecule techniques characterize their photophysics that is, the number of emitted photons, blinking characteristics and survival times until photobleaching takes place. All three dyes exhibit bright fluorescence, as well as an extremely high resistance against photodegradation compared to other well‐known fluorophores. Due to their different characteristics the three new WS‐TDI derivatives are suitable for specialized biological applications. WS‐TDI dodecyl forms non‐fluorescent aggregates in water which can be disrupted in a hydrophobic environment leading to a monomeric fluorescent form. Due to its high lipophilicity WS‐TDI dodecyl anchors efficiently in lipid bilayers with its alkyl chain and hence can be ideally used to image membranes and membrane‐containing compartments in living cells. In contrast, the positively charged WS‐TDI pyridoxy is a new type of chromophore in the WS‐TDI family. It is fully solubilized in water forming fluorescent monomers and is successfully used to label the envelope of herpes simplex viruses. Finally, it is shown that a WS‐TDI derivative functionalized with N‐hydroxysuccinimide ester moiety (WS‐TDI/NHS ester) provides a versatile reactive dye molecule for the specific labelling of amino groups in biomolecules such as DNA.  相似文献   

4.
The world of organic luminophores has been confined for a long time to fairly standard biological labeling applications and to certain analytical tests. Recently, however, the field has undergone a major change of direction, driven by the dual needs to develop novel organic electronic materials and to fuel the rapidly emerging nanotechnologies. Among the many diverse fluorescent molecules, the Bodipy family, first developed as luminescent tags and laser dyes, has become a cornerstone for these new applications. The near future looks extremely bright for "porphyrin's little sister".  相似文献   

5.
The design and synthesis of new fluorescent dyes with emission range at 490-650 nm are described. Their structural and electronic properties have been characterized by both experimental techniques and quantum-chemical calculations. The chromophores are donor-π-bridge-acceptor push-pull compounds with a π bridge of phenyl and thiophene rings and their combination. Compared with previous thiophene fluorophores, these dyes show significant redshift in the absorption and emission spectra and offer compact, red-emitting fluorophores. The dyes have amino succinimidyl active ester and can be readily conjugated to proteins, polymers and other amino-group-containing materials.  相似文献   

6.
Novel fluorescent, conformationally restricted dipyrromethene boron difluoride (BODIPY) dyes have been prepared by introducing a naphthalenyl group at the meso position of the BODIPY core. These BODIPY dyes exhibit increased fluorescence quantum yields compared with dyes that have a meso-position phenyl group with internal rotation. The absorption and emission wavelengths of such conformationally restricted BODIPY dyes can be easily tuned to the near-IR range by derivatization through a condensation reaction with benzaldehyde derivatives. The two-photon absorption properties of these BODIPY dyes were also investigated and the results show that they exhibit increased two-photon excited fluorescence compared to analogue dyes that contain a phenyl group. The one- and two-photon fluorescence imaging of living cells by using selected BODIPY dyes has been successfully demonstrated.  相似文献   

7.
A new nonredox fluorescent probe to realize the imaging of hydroxyl radicals (.OH) in living cells was designed and synthesized. The structure comprised the fluorescent dye boron dipyrromethene (BDP) and a 2,2,6,6‐tetramethyl‐1‐piperidinoxyl (TEMPO) unit. This probe could rapidly respond to .OH with a detection limit of 18 pM , and it possessed superior photostability and pH insensitivity. Other reactive oxygen species (ROS) and relevant intracellular components did not interfere. In particular, the important problem of ONOO? interference was efficiently avoided. An MTT assay proved that the probe was not very cytotoxic. The probe could penetrate into intact cell membranes to selectively detect intracellular .OH without causing cellular damage in living mice macrophages, normal human liver cells. and human hepatoma cells. These advantageous characteristics make the fluorescent probe potentially useful as a new candidate to detect .OH in broad biosystems.  相似文献   

8.
9.
10.
The synthesis of methoxyperylene bisimides and perylene lactame imides with aliphatic N-substituents is described. Both classes of dyes exhibit fluorescence in the bathochromic region of visible light so that red light is obtained. The lightfastness of the dyes is very high, thus, there is special interest for diverse applications.  相似文献   

11.
The fluorescent dye 4-dimethylamino-1,8-naphthalimide was incorporated at the bay area of N,N'-bispyridyl perylene bisimide to afford a fourfold-functionalized perylene bisimide ligand. Through self-assembly directed by metal-ion coordination, a multichromophore supramolecular entity composed of sixteen dimethylaminonaphthalimide antennas and a perylene bisimide-walled square core was subsequently constructed from this linear ditopic ligand and 90 degrees metal corner [Pd(dppp)](OTf)2 (dppp=1,3-bis(diphenylphosphino)propane; OTf=trifluoromethanesulfonate) in good yield. The isolated metallosupramolecular square was characterized by elemental analysis and 1H, 13C, and 31P{1H} NMR and UV/Vis spectroscopy. Furthermore, by means of 1H NMR diffusion-ordered spectroscopy (DOSY) the dimension of this assembly was evaluated by employing a previously reported perylene bisimide ligand and its square assembly as references. The results obtained confirm the square framework of the current assembly. The optical properties of this multichromophore dye assembly were investigated by UV/Vis and steady-state and time-resolved fluorescence spectroscopy. It was revealed that light captured by dimethylaminonaphthalimide antennas could be efficiently transported to the perylene bisimide core by a fluorescence resonance mechanism (energy-transfer efficiency E=95%), and this resulted in almost exclusive detection of intense perylene bisimide emission, irrespective of the excitation wavelength applied. The present square scaffold containing aminonaphthalimide antenna dyes exhibits more than seven times higher fluorescence quantum yield (Phifl=0.37) than a previously reported pyrene-bearing perylene bisimide-walled square (Phifl=0.05). Thus, this multichromophore square assembly with aminonaphthalimide antenna dyes is an artificial model for the cyclic light-harvesting complexes in purple bacteria.  相似文献   

12.
13.
14.
Because the influence of the chemical structure of monomethine cyanine-oligo-2'-deoxyribonucleotide (ODN) conjugates on their binding and fluorescence properties has remained largely undetermined, we synthesized and studied a wide range of conjugates with various structural patterns. Different cyanine dyes such as thiocyanine, quinocyanine, and thiazole orange isomers were obtained. In the case of unsymmetrical cyanines, the linker was attached to either the quinoline or the benzothiazole nucleus. The influence of the ODN counterpart was evaluated by linking the cyanines to the 5'-end or to an internucleotidic phosphate. In the first case, the influence of neighboring nucleic bases was studied, whereas in the second, the stereochemical configuration at the phosphorus atom bearing the cyanine was investigated. We report here on relationships between the structures of the dyes and conjugates and some of their properties, such as the stability and fluorescence changes observed on their hybridization with the target sequence. This study provides useful information towards the design of ODN-cyanine conjugates.  相似文献   

15.
Photoluminescence quenching of single dibenzoterrylene (DBT) dye molecules in a polymeric organic light‐emitting diode was utilized to analyze the current dynamics at nanometer resolution. The quenching mechanism of single DBT molecules results from an increase in the triplet‐state population induced by charge carrier recombination on individual guest molecules. As a consequence of the long triplet‐state relaxation time, its population results in a reduced photoluminescence of the dispersed fluorescent dyes. From the decrease in photoluminescence together with photon correlation measurements, we could quantify the local current density and its time‐dependent evolution in the vicinity of the single‐molecule probe. This optical technique establishes a non‐invasive approach to map the time‐resolved current density in organic light‐emitting diodes on the nanometer scale.  相似文献   

16.
17.
The study of a new dye‐matrix system—quickly frozen ortho‐dichlorobenzene weakly doped with terrylene—via single‐molecule (SM) spectroscopy is presented. The spectral and photo‐physical properties, dynamics, and temperature broadening of SM spectra at low temperatures are discussed. The data reveal a broad inhomogeneous distribution, which indicates a high degree of matrix inhomogeneities, but at the same time, huge fluorescence emission rates and extraordinary SM spectral and photochemical stability with almost complete absence of blinking and bleaching. These unusual properties render the new system a promising candidate for applications in photonics, for example, for delivering single photons on demand.  相似文献   

18.
In single‐molecule applications, the photostability of fluorescent molecules is a key parameter. We apply fluorescence correlation spectroscopy to compare the photostability of four fluorescein and four borondipyrromethene (BODIPY) dyes of similar structure but different triplet yields. The latter class of dyes are more stable. In the kinetic analysis the, diffusion and photobleaching are treated as competitive processes. Corrections, which account for saturation and for experimental artefacts, are achieved solely by using experimental data. Photobleaching is found to occur mainly through the first excited singlet state S1, in contrast to previous findings.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号