共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystal structures of C8H8TeMe+ BPh4? (I) and C4H8TePh+ BPh4? (II) have been determined from three-dimensional X-ray counter data.I is monoclinic, space group P21/n with a 9.175(1), b 17.402(3), c 16.998(3) Å, β 98.92(6)°, Z = 4, R = 5.1% for 1641 observed reflections.II is triclinic, space group P with a 9.635(3), b 17.721(3), c 16.858(8) Å, α 89.77(2), β 104.36(4), γ 90.16(2)°, Z = 4, R = 9.0% for 6466 observed reflections.In both I and II tellurium is three-coordinate in a pyramidal geometry, with TeC distances in the range 2.07(1)–2.14(1) Å (I) and 2.10(1)–2.17(1) Å (II). In both structures short contacts of 3.4—3.5 Å occur between tellurium and carbon atoms of the tetraphenylborate anion. 相似文献
2.
The five polyhalides [(Ph)(3)PBr][Br(7)], [(Bz)(Ph)(3)P](2)[Br(8)], [(n-Bu)(3)MeN](2)[Br(20)], [C(4)MPyr](2)[Br(20)] ([C(4)MPyr] = N-butyl-N-methylpyrrolidinium), and [(Ph)(3)PCl](2)[Cl(2)I(14)] were prepared by the reaction of dibromine and iodine monochloride in ionic liquids. The compounds [(Ph)(3)PBr][Br(7)] and [(Bz)(Ph)(3)P](2)[Br(8)] contain discrete pyramidal [Br(7)](-) and Z-shaped [Br(8)](2-) polybromide anions. [(n-Bu)(3)MeN](2)[Br(20)] and [C(4)MPyr](2)[Br(20)] exhibit new infinite two- and three-dimensional polybromide networks and contain the highest percentage of dibromine ever observed in a compound. [(Ph)(3)PCl](2)[Cl(2)I(14)] also consists of a three-dimensional network and is the first example of an infinite polyiodine chloride. All compounds were obtained from ionic liquids as the solvent that, on the one hand, guarantees for a high stability against strongly oxidizing Br(2) and ICl and that, on the other hand, reduces the high volatility of the molecular halogens. 相似文献
3.
4.
LIAN Zhao-Xuna② LIU Pinga ZHANG Jia-Mina LOU Tian-Juna WANG Tian-Xia LI Hao-Hongb a 《结构化学》2008,27(6)
The title compounds, Cu(L1)(C4H8NHO) and Ni(L2)(C4H8NHO) (H2L1 = 5-bro- mosalicylaldehyde-p-nitrobenzoylhydrazone, H2L2 = 5-bromosalicylaldehyde-p-hydroxybenzo- ylhydrazone), have been obtained and characterized by single-crystal X-ray diffraction. Complex 1 belongs to the triclinic system, space group P1 with a = 8.6960(2), b = 9.957(2), c = 11.878(2) , α = 73.36(3), β = 78.25(3), γ = 82.64(3)o, V = 962.1(3) 3, Mr = 512.81, Z = 2, F(000) = 514, Dc = 1.770 g/cm3, μ(MoKα) = 3.251, R = 0.0337 and wR = 0.0846. Complex 2 is of monoclinic, space group P21/c with a = 13.313(2), b = 8.2096(1), c = 21.890(3) , β = 125.737(3)o, V = 1941.9(4) 3, Mr = 478.97, Z = 4, F(000) = 968, Dc = 1.638 g/cm3, μ(MoKα) = 3.085, R = 0.0356 and wR = 0.0817. The ligands form a satisfactory N2O2 square plane around the metal centers in two compounds. Different patterns of hydrogen bonds are observed owing to the presence of different substituents on aromatic ring of the acylhydrazone Schiff bases. In complex 1, square-planar copper(II) complexes are linked by intermolecular hydrogen bonds leading to zigzag infinite chains. In complex 2, the metal complexes are linked via hydrogen bonds to form corrugated sheets in a staggered fashion; 3D channels along the b axis are constructed through other non-covalent interactions between the neighboring layers. 相似文献
5.
6.
7.
Ernesto Schulz Lang Clvis Peppe Renato A. Zan Ulrich Abram Ezequiel M. Vzquez‐Lpez Burkhard Krumm Oliver P. Ruscitti 《无机化学与普通化学杂志》2002,628(13):2815-2817
The novel mercury‐tellurium cluster [Hg8(μ‐n‐C3H7Te)12(μ2‐Br)Br3] is formed during the reaction of HgBr2 and (n‐C3H7Te)2Hg in DMSO. Its crystal structure has been elucidated showing [Hg8(μ‐n‐C3H7Te)12(μ2‐Br)]3+ units with a bromine‐centered distorted Hg8 cube. The mercury atoms are bridged by n‐C3H7Te— ligands and the resulting clusters are linked to a three‐dimensional network by bromine atoms. The close packing of the cluster is mainly determined by the flexible n‐propyl residues of the telluride building blocks. 相似文献
8.
Jie-Hui Yu Ji-Qing Xu Ling Ye Hong Ding Jia-Ning Xu Hong-Bin Jia Tie-Gang Wang Zhong-Cheng Mu Guang-Di Yang 《Journal of Cluster Science》2003,14(1):1-8
The hydrothermal reactions of CuBr2, CuX (X=Br, I), and phen (phen=1,10-phenanthroline, C12H8N2) have lead to the syntheses of two novel complexes of one-dimensional [Cu4Br2I3(phen)2]
n
1 and trinuclear discrete cluster Cu3Br3(phen)2
2. Both compounds were characterized by singe-crystal X-ray diffraction. Crystal data for 1. Monoclinic, space group P2
1/c with a=14.054(3) Å, b=13.700(3) Å, c=15.920(3) Å, =114.16(3)°, Z=2; 2. Monoclinic, space group C2/c with a=10.040(2) Å, b=14.516(3) Å, c=16.319(3) Å, =94.29(3)°, Z=6. 相似文献
9.
Henriette Grger Christine Lode Heike Vollmer Harald Krautscheid Sergej Lebedkin 《无机化学与普通化学杂志》2002,628(1):57-62
Bromoplumbates with One‐dimensional Polymeric and Isolated Anions: (Bzl4P)2[Pb3Br8], (Bzl4P)2[Pb3Br8(dmf)2], (Bzl4P)[PbBr3], (Bzl4P)2[PbBr4], and (Bzl4P)4[Pb2Br6][PbBr4] PbBr2 reacts with LiBr and (Bzl4P)(PF6) (Bzl = CH2C6H5) in acetone to form a series of bromoplumbate complexes with compositions and structures depending on the conditions of reaction and crystallization. While the anions in (Bzl4P)2[Pb3Br8] ( 1 ) and (Bzl4P)[PbBr3] ( 2 ) are one‐dimensional polymers with penta‐ and hexacoordinated Pb atoms, the metal atoms in the mono‐ and dinuclear complex anions of (Bzl4P)2[PbBr4] · 2acetone ( 3 · 2acetone) and (Bzl4P)4[Pb2Br6][PbBr4] ( 4 ) bind to four bromo ligands. From DMF as a solvent (Bzl4P)2[Pb3Br8(dmf)2] ( 1 b ) crystallizes with the same bromoplumbate structure as in 1 a , but with dmf ligands occupying the coordination sites vacant in 1 a . Upon radiation of compound 3 with ultraviolet light greenish yellow photoluminescence (emssion maximum at 547 nm) is observed. Crystallographic details see “Inhaltsübersicht”. 相似文献
10.
11.
12.
Kirakci K Cordier S Perrin C 《Chemistry (Weinheim an der Bergstrasse, Germany)》2006,12(24):6419-6425
The double salts Rb(3)[Mo(6)Br(i) (7)Y(i)Br(a) (6)](Rb(3)[MoBr(6)])(3) (Y=Se, Te) result from the partial disproportionation of the Mo(6)Br(12) octahedral-cluster-based bromide, in the presence of corresponding chalcogenides and RbBr salt (crystal data: Rb(12)[MoBr(6)](3)[Mo(6)Br(i) (7)Te(i)Br(a) (6)] (1), Pm$\bar 3$m (No. 221), a=12.1558(2) A, Z=1, R(1)=0.028; wR(2)=0.050; Rb(12)[MoBr(6)](3)[Mo(6)Br(i) (7)Se(i)Br(a) (6)] (2), Pm$\bar 3$m, a=12.144(3) A, Z=1, R(1)=0.028; wR(2)=0.050). The structures of 1 and 2 are built up from [Mo(III)Br(6)](3-) complexes and [Mo(6)Br(i) (7)Y(i)Br(a) (6)](3-) cluster units characterised by a random distribution of seven bromine and one chalcogen ligands on all the eight inner positions that face cap the Mo(6) clusters. Such a distribution implies a static orientational disorder of the [Mo(6)Br(i) (7)Y(i)Br(a) (6)](3-) units around the origin of the unit cell. Close-packed anionic layers based on [Mo(III)Br(6)](3-) complexes and [Mo(6)Br(i) (7)Y(i)Br(a) (6)](3-) cluster units are stacked in the sequence ABC. This arrangement leads to very short Br(a)--Br(a) intercluster unit distances of 3.252 A, much lower than the sum of the van der Waals radii (3.70 A). The trivalent oxidation state of molybdenum in the Mo complexes and 24 valence electrons per Mo(6) cluster have been confirmed by magnetic susceptibility measurements. Salts 1 and 2 constitute the first examples of structurally characterised bromides containing discrete [Mo(III)Br(6)](3-) complexes obtained by means of solid-state synthesis. 相似文献
13.
14.
15.
16.
Walter Ponikwar Peter Mayer Holger Piotrowski Peter Swoboda Claus‐Jürgen Oetker Wolfgang Beck 《无机化学与普通化学杂志》2002,628(1):15-19
Pseudohalogeno Metal Compounds. LXXVIII. Structures of Planar and Tetrahedral Tetrafulminato Metal Complexes: [N(C3H7)4]2 [Ni(CNO)4], [N(C3H7)4]2 [Pt(CNO)4], and [N(C3H7)4]2 [Zn(CNO)4] The crystals contain the tetrafulminatometallates of an ideal square planar structure ([Ni(CNO)4]2–, [Pt(CNO)4]2–) with D4h symmetry at the nickel and platinum atom and a tetrahedron ([Zn(CNO)4]2–) with perfect Td symmetry at the zinc atom and with linear C≡N–O ligands. The metal carbon bonds (Ni–C: 187 pm, Pt–C: 200 pm, Zn–C: 201 pm) of the metal fulminates are very close to those of the corresponding cyano complexes. In the crystals the anions ([Ni(CNO)4]2–, [Pt(CNO)4]2–, [Zn(CNO)4]2–) are separated by the cations ([N(C3H7)4]+) which explains the thermal stability of these compounds. 相似文献
17.
18.
Liu L Zhang LR Wang XF Li GH Liu YL Pang WQ 《Dalton transactions (Cambridge, England : 2003)》2008,(15):2009-2014
Employing achiral organic amines (2-methylbenzimidazole and 1,4-diazabicyclo[2.2.2]octane) as the structure-directing agent and ligand, two chiral zincophosphites, [Zn(C(8)H(8)N(2))(HPO(3))] 1 and (C(6)H(13)N(2))[Zn(3)(C(6)H(12)N(2))(HPO(3))(3)(H(2)PO(3))] 2, have been hydro(solvo)-thermally synthesized, crystallizing in the chiral space group P2(1)2(1)2(1). Single-crystal structural analysis reveals that compound 1 consists of alternating ZnO(3)N and HPO(3) units exhibiting a neutral one-dimensional chiral chain. Interestingly, the organic ligands interact with the inorganic chain via hydrogen-bonds in hydrogen-bonded helix fashion. Compound 2, a three-dimensional chiral open framework with 16-MR channels, is formed by the distorted {Zn(3)P(4)} secondary building unit (SBU). The organic amine molecules play dual roles as both ligands and countercations. 相似文献
19.