首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The polarized Raman scattering from small single crystals of Cu2HgI4 provided assignments for the more prominent Raman features to specific irreducible representations. The E symmetry assignment, mass dependence, and pressure dependence of the 36 cm?1 band in Cu2HgI4 and 24 cm?1 band in Ag2HgI4 indicate that these features approximate the attempt frequency for ion hopping. The unusually high pre-exponential factor in the Arrhenius expression for ion hopping is discussed in light of the observed attempt frequency; we conclude that despite the high activation energy the conduction mechanism is similar to other heavy-metal solid electrolytes.  相似文献   

2.
Silver mercury iodide, Ag2HgI4, has been studied to pressures of 75–100 kbar at 25°C. There are now four high pressure phases known. Transport studies indicate predominantly electronic conduction, with the highest pressure phase showing rectification in an asymmetric conductivity cell. Optical studies now corroborate the four high pressure phases. For two of the phases the energy gap shifts to lower energies with increasing pressure.  相似文献   

3.
4.
The composition range of α- and β-Ag2HgI4 near the transformation temperature is determined by X-ray diffraction. The electrical conductivity measured in the α-phase is nearly unaffected by deviation from stoichiometry. This is caused by a compensation of the composition dependences of σ0 and of the activation energy EA. From the experimental results the dependences of the entropy and of the Gibbs energy for migration of Ag-ions on temperature and on composition are estimated.  相似文献   

5.
Mixtures of AgI and PbI2 cooled from the melt result in the peritectic formation of a fast ion conducting phase centred about Ag4PbI6, which is face centred cubic with a = 6.33(5)A; this phase exhibits high electrical conductivity. On cooling to about 125°C, dissociation occurs to γAgI and PbI2, accompanied by the transient formation of another phase, centred about Ag2PbI4. A modified form of the T-x section of the equilibrium phase diagram at AgI concentrations greater than 60 mole % and below 300°C is proposed.  相似文献   

6.
Magnetic susceptibility χ measurements in the range from 2 to 300 K were carried out on samples of the Cu2FeSnSe4 and Cu2MnSnSe4 compounds. It was found that Cu2FeSnSe4 was antiferromagnetic showing ideal Curie-Weiss behavior with a Néel temperature TN of about 19 K and Curie-Weiss temperature θ=−200 K, while for Cu2MnSnSe4 the behavior was spin-glass with a freezing temperature Tf of about 22 K and Curie-Weiss temperature θ=−25 K. The spin-glass order parameter q(T), determined from the susceptibility data, was found to be in agreement with the prediction of conventional spin-glass theory.  相似文献   

7.
The X-ray diffractometer patterns of a reciprocal space have been analyzed in the modulated phases of Cs2ZnI4 crystals. The character of the atomic displacements in the modulation wave has been established. The temperature behaviour of both a modulation wave vector and amplitude has been determined from the position and intensity of satellite reflections.  相似文献   

8.
Investigations of the Raman spectrum of Cu3V S4 under pressure up to 60 kbar show a pronounced enhancement of the linewidth of the A1 mode around 20 kbar. This anomaly is interpreted in terms of a resonance between the A1 mode and a double phonon structure arising from the combination of F2 like zone center phonons.  相似文献   

9.
李丹  张幸红 《中国物理 B》2011,20(12):126102-126102
We investigate the electronic structure of Ag2HgSnSe4 in a wurtzite-stannite structure with the first principles method. This crystal is a direct band-gap compound. In addition the dielectric function, absorption coefficient, reflectivity, and energy-loss function are studied using the density functional theory in the generalized gradient approximation. We discuss the optical transitions between the valence bands and the conduction bands in the spectrum of the imaginary part of the dielectric function at length. We also find a very high absorption coefficient and a wide absorption band for this material. The prominent structures in the spectra of reflectivity and the energy-loss function are discussed in detail.  相似文献   

10.
In an attempt to resolve the crystal structure and the corresponding space group of the magnetic semiconductor Cu2FeSnS4, samples of this compound were studied by X-ray diffraction, differential thermal analysis, Raman scattering and magnetic susceptibility. It was found that at room temperature this compound prepared by a careful crystal growth process, including annealing to equilibrium at a suitable temperature followed by slow cooling of the samples to 300 K, crystallizes in a tetragonal structure with space group .  相似文献   

11.
We investigate the electronic structure for Cu2CdGeSe4 in stannite structure with the first-principles method. This crystal is the direct band gap compound. In addition, the dielectric function, absorption coefficient, reflectivity, and energy-loss function are studied using the density functional theory within the generalized gradient approximation. We discuss the optical transitions between the valence bands and the conduction bands in the spectra of the imaginary part of the dielectric function at length. We also find a very high absorption coefficient and wide absorption spectrum for this material. The prominent structures in the spectra of reflectivity and energy-loss function are discussed in detail.  相似文献   

12.
Measurements of magnetic susceptibility χ as a function of temperature T and of magnetisation M as a function of applied magnetic field H at a number of fixed temperatures were made on polycrystalline samples of Cu2FeGeSe4. The χ versus T data show that an antiferromagnetic transition occurs at 20 K and that a second transition occurs at 8 K, indicating a transition to weak ferromagnetic form. The M versus H curves indicated that at all temperatures below 70 K bound magnetic polarons (BMP) occur, in the paramagnetic, antiferromagnetic and weak ferromagnetic ranges. Below 8 K, the M versus H curves exhibited magnetic hysteresis, and this is attributed to the interaction of the BMPs with tetragonally anisotropic matrix. The B versus H curves were well fitted by a Langevin-type of equation, and the variation of the fitting parameters determined as a function of temperature. These showed that above 20 K the total BMP magnetisation fell almost linearly with increasing temperature and effectively disappeared at 70 K. The number of BMPs remained practically constant with temperature having a mean value of 6.55×1018/cm3. The analysis gave a value of 213 μB for the average magnetic moment of a BMP, corresponding to 42.4 Fe atoms. Using a simple spherical model, this gives the radius of a BMP as 12.0 Å.  相似文献   

13.
The optical phonon spectrum of the semiconductor Cu2SnTe3, that crystallizes in the orthorhombic structure with space group Imm2 (), have been studied by measuring unpolarized Raman scattering between 10 and 300 K. The experimental frequencies of the phonon modes observed were compared to those calculated by using simplified lattice dynamical models reported in the literature. From combined analysis of these results together with the factor group analysis of the zone-center vibrational modes, valuable information about these modes was obtained and their possible symmetry was assigned. A1 modes at 71, 123, 167, 176 and 190 cm−1; A2 modes 115 and 131 cm−1; B1 modes at 76, 142 and 152 cm−1; B2 modes at 89, 100 and 206 cm−1; a overtone at 246 cm−1, and combinations at 218, 270 and 292 cm−1; have been observed in this compound.  相似文献   

14.
The electrical properties of the solid electrolytes Ag7I4VO4-Al2O3 (0-40 mol% Al2O3) are investigated. The electrical conductivity, dielectric constant and dielectric loss are increased by increasing the concentration of Al2O3; showing a maximum at 30 mol% Al2O3. The conductivity is found to be increased by decreasing the particle size of Al2O3. The results are explained using the random resistor network model (RRN). This is due to the formation of a highly conducting interface layer along the matrix-particle interface. This layer is destroyed at concentrations higher than 30 mol% Al2O3.  相似文献   

15.
Ab initio band structure calculations were performed for the low-temperature modifications of the silver chalcogenides β-Ag2Se, β-Ag2Te and the ternary compound β-Ag3AuSe2 by the local spherical wave (LSW) method. Coordinates of the atoms of β-Ag2Se and β-Ag3AuSe2 were obtained from refinements using X-ray powder data. The structures are characterized by three, four and five coordinations of silver by the chalcogen, a linear coordination of gold by Se, and by metal-metal distances only slightly larger than in the metals. The band structure calculations show that β-Ag3AuSe2 is a semiconductor, while β-Ag2Se and β-Ag2Te are semimetals with an overlap of about 0.1-0.2 eV. The Ag 4d and Au 5d states are strongly hybridized with the chalcogen p states all over the valence bands. β-Ag2Se and β-Ag2Te have a very low DOS in the energy range from about −0.1 to +0.5 eV. The calculated effective mass β-Ag2Se is about 0.1-0.3 me for electrons and 0.75 me for holes, respectively.  相似文献   

16.
Raman spectra of the three entitled crystals are analysed within the framework of a lattice-dynamical model treatment using preliminary obtained X-ray diffraction data. The short range atomic arrangement and spectrochemical peculiarities of these structures are jointly discussed, which is considered as an initial step for studying the nature of the glass phases in the xTl2O+(1−x)TeO2 system. The charged TeO32− groups and the neutral TeO2 quasi-molecules are proposed as the basic units forming the complex tellurite anions. However, no relevant characteristic frequencies can be indicated in the spectra since the interatomic separation in those units are highly variables and their vibrational states are mixed and delocalised.  相似文献   

17.
Tl2InGaS4 layered crystals are studied through the dark electrical conductivity, space charge limited current and illumination- and temperature-dependent photoconductivity measurements in the temperature regions of 220-350 K, 300-400 K and 200-350 K, respectively. The space charge limited current measurements revealed the existence of a single discrete trapping level located at 0.44 eV. The dark electrical conductivity showed the existence of two energy levels of 0.32 eV and 0.60 eV being dominant above and below 300 K, respectively. The photoconductivity measurements reflected the existence of two other energy levels located at 0.28 eV and 0.19 eV at high and low temperatures, respectively. The photocurrent is observed to increase with increasing temperature up to a maximum temperature of 330 K. The illumination dependence of photoconductivity is found to exhibit supralinear recombination in all the studied temperature ranges. The change in recombination mechanism is attributed to exchange in the behavior of sensitizing and recombination centers.  相似文献   

18.
Measurements of the spin-lattice relaxation time, NMR absorption line and magnetization have been carried out on the Tl3H(SO4)2 crystal below 50 K. The anomaly at around 7 K was: (1) the spin-lattice relaxation times of 1H and 205Tl nuclei increase steeply with decreasing temperature below 7 K, (2) the NMR absorption lines below 7 K shift to the high-magnetic field side in comparison with that above 7 K, and (3) the 1H NMR line width exhibits a drastic increase of the line width with decreasing temperature below 7 K. These results indicate that the magnetic dipole fluctuation of the proton changes at 7 K. On the other hand, there are no remarkable anomalies of magnetic susceptibility at around 7 K. From these results it is deduced that the anomaly at around 7 K is caused by the change in quantum mechanical process of the proton from proton tunneling to zero-point vibration of hydrogen in the hydrogen bond with the decrease of temperature.  相似文献   

19.
A Bi2V1 − xyUxBiyO5.5 + 0.5xy solid solution derived from Bi4V2O11 has been prepared and characterized with x up to 0.125 for y = 0. Partial substitution of U6+ for V5+ in Bi4V2O11 leads to the stabilization at room temperature of the high-oxide ion conducting γ-phase, in contrast with other M6+ dopants which stabilize the β-phase. The lower conductivity in U substituted system compared with BICUVOX.10 is attributed to its higher activation energy. Conductivity values and activation energies of the U substituted phases compare well with Bi2UO6.  相似文献   

20.
Measurements of the temperature and pressure dependences of the resistivity of the pseudo-one-dimensional ternary compound Tl2Mo6Se6 are presented. We find that the conductivity parallel to the highly conducting c-axis is enhanced by pressure and the superconducting transition temperature Tc is suppressed by pressure at a rate ?Tc?P=?7.6×10?5 kbar?1. These results are discussed in relation to the current models of transport in one-dimensional conductors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号