首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
For many solid materials the stress relaxation process obeys the universal relationF = – (d/d lnt)max = (0.1 ± 0.01) ( 0 i ), regardless of the structure of the material. Here denotes the stress,t the time, 0 the initial stress of the experiment and i the internal stress. A cooperative model accounting for the similarity in relaxation behaviour between different materials was developed earlier. Since this model has a spectral character, the concepts of linear viscoelasticity are used here to evaluate the corresponding prediction of the dynamic mechanical properties, i.e. the frequency dependence of the storageE () and lossE () moduli. Useful numerical approximations ofE () andE () are also evaluated. It is noted that the universal relation in stress relaxation had a counterpart in the frequency dependence ofE (). The theoretical prediction of the loss factor for high-density polyethylene is compared with experimental results. The agreement is good.  相似文献   

2.
Response of an elastic Bingham fluid to oscillatory shear   总被引:1,自引:0,他引:1  
The response of an elastic Bingham fluid to oscillatory strain has been modeled and compared with experiments on an oil-in-water emulsion. The newly developed model includes elastic solid deformation below the yield stress (or strain), and Newtonian flow above the yield stress. In sinusoidal oscillatory deformations at low strain amplitudes the stress response is sinusoidal and in phase with the strain. At large strain amplitudes, above the yield stress, the stress response is non-linear and is out of phase with strain because of the storage and release of elastic recoverable strain. In oscillatory deformation between parallel disks the non-uniform strain in the radial direction causes the location of the yield surface to move in-and-out during each oscillation. The radial location of the yield surface is calculated and the resulting torque on the stationary disk is determined. Torque waveforms are calculated for various strains and frequencies and compared to experiments on a model oil-in-water emulsion. Model parameters are evaluated independently: the elastic modulus of the emulsion is determined from data at low strains, the yield strain is determined from the phase shift between torque and strain, and the Bingham viscosity is determined from the frequency dependence of the torque at high strains. Using these parameters the torque waveforms are predicted quantitatively for all strains and frequencies. In accord with the model predictions the phase shift is found to depend on strain but to be independent of frequency.Notation A plate strain amplitude (parallel plates) - A R plate strain amplitude at disk edge (parallel disks) - G elastic modulus - m torque (parallel disks) - M normalized torque (parallel disks) = 2m/R 30 - N ratio of viscous to elastic stresses (parallel plates) =µ A/ 0 ratio of viscous to elastic stresses (parallel disks) =µ A R/0 - r normalized radial position (parallel disks) =r/R - r radial position (parallel disks) - R disk radius (parallel disks) - t normalized time = t — /2 - t time - E elastic strain - P plate strain (displacement of top plate or disk divided by distance between plates or disks) - PR plate strain at disk edge (parallel disks) - 0 yield strain - E normalized elastic strain = E/0 - P normalized plate strain = P/0 - PR normalized plate strain at disk edge (parallel disks) = PR/0 - 0 normalized plate strain amplitude (parallel plates) =A/ 0 — normalized plate strain amplitude at disk edge (parallel disks) =A R/0 - phase shift between P andT (parallel plates) — phase shift between PR andM (parallel disks) - µ Bingham viscosity - stress - 0 yield stress - T normalized stress =/ 0 - frequency  相似文献   

3.
Results are reported for the dynamic moduli,G andG, measured mechanically, and the dynamic third normal stress difference, measured optically, of a series bidisperse linear polymer melts under oscillatory shear. Nearly monodisperse hydrogenated polyisoprenes of molecular weights 53000 and 370000 were used to prepare blends with a volume fraction of long polymer, L, of 0.10, 0.20, 0.30, 0.50, and 0.75. The results demonstrate the applicability of birefringence measurements to solve the longstanding problem of measuring the third normal stress difference in oscillatory flow. The relationship between the third normal stress difference and the shear stress observed for these entangled polymer melts is in agreement with a widely predicted constitutive relationship: the relationship between the first normal stress difference and the shear stress is that of a simple fluid, and the second normal stress difference is proportional to the first. These results demonstrate the potential use of 1,3-birefringence to measure the third normal stress difference in oscillatory flow. Further, the general constitutive equation supported by the present results may be used to determine the dynamic moduli from the measured third normal stress difference in small amplitude oscillatory shear. Directions for future research, including the use of birefringence measurements to determineN 2/N 1 in oscillatory shear, are described.  相似文献   

4.
The stress relaxation behavior of high density polyethylene (HDPE) can be affected by ageing processes; e.g., with increasing storage time at a low temperature following a quench from a high temperature (close to the melting point) the relaxation curves change shape. More specifically, the stress level approached after very long loading times in a stress relaxation experiment increases with the ageing time. Here this stress level is denoted the internal stress i. Struik has pointed out that physical ageing may also occur in semicrystalline polymers like HDPE. The physical ageing should then be associated with that part of the amorphous phase which is closest to the surfaces of the crystallites. This part of the amorphous phase of HDPE can be assumed to have a restricted mobility at room temperature and may have a partially glassy character. In this paper a model for explaining the increase in i for HDPE with increasing ageing time is proposed and discussed. It is based on the separation of the amorphous phase into two parts as suggested by Struik. The glassy part of the amorphous phase ages in a way similar to that of an entirely amorphous polymer quenched to a temperature below its glass transition, while the more rubbery phase is assumed not to undergo any physical ageing.  相似文献   

5.
The rheological properties of glass fibre-filled polypropylene melts have been investigated. A high pressure capillary rheometer has been used for the experimental study. The effect of shear rate, temperature, and fibre concentration on the melt viscosity and viscoelastic properties have been studied. An equation has been proposed to correlate the melt viscosity with shear rate, temperature and fibre content. A master curve relation on this basis has been brought out using the shift factora T . a T shift factor (=/ r ) - A i coefficients of the polynomical of eq. (1) (i = 0, 1, 2, ,n) - B constant in the AFE equation (eq. (2)) (Pa s) - B constant in eq. (3) - D extrudate diameter - d capillary diameter - activation energy at constant shear rate (kcal/mole) - E activation energy at constant shear stress (kcal/mole) - T melt temperature (K) - X fraction glass fibre by weight - shear rate (s–1) - shear viscosity (Pa s) - normal stress coefficient (Pa s2) - 1 2 first normal-stress difference (Pa) - shear stress (Pa) - r at reference temperature  相似文献   

6.
The peristaltic motion of a non-Newtonian fluid represented by the constitutive equation for a second-order fluid was studied for the case of a planar channel with harmonically undulating extensible walls. A perturbation series for the parameter ( half-width of channel/wave length) obtained explicit terms of 0(2), 0(2Re2) and 0(1Re2) respectively representing curvature, inertia and the non-Newtonian character of the fluid. Numerical computations were performed and compared to the perturbation analysis in order to determine the range of validity of the terms.Presented at the second conference Recent Developments in Structured Continua, May 23–25, 1990, in Sherbrooke, Québec, Canada  相似文献   

7.
A mathematical model was developed to describe the behavior of Herschel-Bulkley fluids in a back extrusion (annular pumping) device. A technique was also developed to determine the rheological properties (yield stress, flow behavior index, and consistency coefficient) of these fluids. Mathematical terms were expressed in four dimensionless terms, and graphical aids and tables were prepared to facilitate the handling of the expressions.Nomenclature a radius of the plunger, m - dv/dr shear rate, s–1 - F force applied to the plunger, N - F b buoyancy force, N - F cb force corrected for buoyancy, N - F T recorded force just before the plunger is stopped, N - F Te recorded force after the plunger is stopped, N - g acceleration due to gravity, m/s2 - H(t) momentary height between plunger and container bottom, m - K a/R, dimensionless - L length of annular region, m - L(t) depth of plunger penetration, m - n flow behavior index, dimensionless - p static pressure, Pa - P L pressure in excess of hydrostatic pressure at the plunger base, Pa - p 0 pressure at entrance to annulus, Pa - P pressure drop per unit of length, Pa/m - Q total volumetric flow rate through the annulus, m3/s - r radial coordinate, measured from common axis of cylinder forming annulus, m - R radius of outer cylinder of annulus, m - s reciprocal of n, dimensionless - t time, s - T dimensionless shear stress, defined in Eq. (3) - T 0 dimensionless yield stress, defined in Eq. (4) - T w dimensionless shear stress at the plunger wall - p velocity of plunger, m/s - velocity, m/s - mass density of fluid, kg/m3 - Newtonian viscosity, Pa s - P p 0 p L , Pa - consistency coefficient, Pa sn - value of where shear stress is zero - , + limits of the plug flow region (Fig. 1) - r/R - shear stress, Pa - y yield stress, Pa - w shear stress at the plunger wall, Pa - dimensionless flow rate defined in Eq. (24) - dimensionless velocity defined by Eq. (5) - , + dimensionless velocity outside the plug flow region - max dimensionless maximum velocity in the plug flow region - p dimensionless velocity at the plunger wall  相似文献   

8.
To investigate the viscoelastic behavior of fluid dispersions under steady shear flow conditions, an apparatus for parallel superimposed oscillations has been constructed which consists of a rotating cup containing the liquid under investigation in which a torsional pendulum is immersed. By measuring the resonance frequency and bandwidth of the resonator in both liquid and in air, the frequency and steady-shear-rate-dependent complex shear modulus can be obtained. By exchange of the resonator lumps it is possible to use the instrument at four different frequencies: 85, 284, 740, and 2440 Hz while the steady shear rate can be varied from 1 to 55 s–1. After treatment of the theoretical background, design, and measuring procedure, the calibration with a number of Newtonian liquids is described and the accuracy of the instrument is discussed.Notation a radius of the lump - A geometrical constant - b inner radius of the sample holder - c constant - C 1, C 2 apparatus constants - D damping of the pendulum - e x , e y , e z Cartesian basis - e r , e , e z orthonormal cylindrical basis - E geometrical constant - E t , 0 E t , t relative strain tensor - f function of shear rate - F t relative deformation tensor - G (t) memory function - G * complex shear modulus - G Re(G * ) - G Im(G * ) - h distance between plates - H * transfer function - , functional - i imaginary unit: i 2= – 1 - I moment of inertia - J exc excitation current - J 0 amplitude of J exc - k * = kik complex wave number - K torsional constant - K fourth order tensor - l length of the lump - L mutual inductance - M dr driving torque - M liq torque exerted by the liquid - 0 M liq, liq steady state and dynamic part of Mliq - n power of the shear rate - p isotropic pressure - Q quality factor - r radial position - R,R 0, R c Re(Z *, Z 0 * , Z c * ) - s time - t, t time - T temperature - T, 0 T, stress tensor - u velocity - U lock-in output - 0 velocity - V det detector output voltage - V sig, V cr signal and cross-talk part of V det - x Cartesian coordinate - X , X 0, X c Im(Z *, Z 0 * , Z c * ) - y Cartesian coordinate - z Cartesian coordinate, axial position  相似文献   

9.
Filled polymeric liquids often exhibit apparent yielding and shear thinning in steady shear flow. Yielding results from non-hydrodynamic particle—particle interactions, while shear thinning results from the non-Newtonian behavior of the polymer melt. A simple equation, based on the linear superposition of two relaxation mechanisms, is proposed to describe the viscosity of filled polymer melts over a wide range of shear rates and filler volume fraction.The viscosity is written as the sum of two generalized Newtonian liquid models. The resulting equation can describe a wide range of shear-thinning viscosity curves, and a hierarchy of equations is obtained by simplifying the general case. Some of the parameters in the equation can be related to the properties of the unfilled liquid and the solid volume fraction. One adjustable parameter, a yield stress, is necessary to describe the viscosity at low rates where non-hydrodynamic particle—particle interaction dominate. At high shear rates, where particle—particle interactions are dominated by interparticle hydrodynamics, no adjustable parameters are necessary. A single equation describes both the high and low shear rate regimes. Predictions of the equation closely fit published viscosity data of filled polymer melts. n power-law index - n 1,n 2 power-law index of first (second) term - shear rate - steady shear viscosity - 0 zero-shear rate viscosity - 0, 1, 0, 2 zero-shear rate viscosity of first (second) term - time constant - 1, 2 time constant of first (second) term - µ r relative viscosity of filled Newtonian liquid - 0 yield stress - ø solid volume fraction - ø m maximum solid volume fraction  相似文献   

10.
In solutions of ABA-triblock copolymers in a poor solvent for A thermoreversible gelation can occur. A three-dimensional dynamic network may form and, given the polymer and the solvent, its structure will depend on temperature and polymer mass fraction. The zero-shear rate viscosity of solutions of the triblock-copolymer polystyrene-polyisoprene-polystyrene in n-tetradecane was measured as a function of temperature and polymer mass fraction, and analyzed; the polystyrene blocks contained about 100 monomers, the polyisoprene blocks about 2000 monomers. Empirically, in the viscosity at constant mass fraction plotted versus inverse temperature, two contributions could be discerned; one contribution dominating at high and the other one dominating at low temperatures. In a comparison with theory, the contribution dominating at low temperatures was identified with the Lodge transient network viscosity; some questions remain to be answered, however. An earlier proposal for defining the gelation temperature T gel is specified for the systems considered, and leads to a gelation curve; T gel as a function of polymer mass fraction.Mathematical symbols {} functional dependence; e.g., f{x} means f is a function of x - p log logarithm to the base number p; e.g., 10log is the common logarithm - exp exponential function with base number e - sin trigonometric sine function - lim limit operation - – in integral sign: Cauchy Principal Value of integral, e.g., - derivative to x - partial derivative to x Latin symbols dimensionless constant - b constant with dimension of absolute temperature - constant with dimension of absolute temperature - B dimensionless constant - c mass fraction - dimensionless constant - constant with dimension of absolute temperature - d * dimensionless constant - D{0} constant with dimension of absolute temperature - e base number of natural (or Naperian) logarithm - g distribution function of inverse relaxation times - G relaxation strength relaxation function - h distribution function of relaxation times reaction constant enthalpy of a molecule - H Heaviside unit step function - i complex number defined by i 2 = –1 - j{0} constant with dimension of viscosity - j index number - k Boltzmann's constant - k H Huggins' coefficient - m mass of a molecule - n number - N number - p index number - s entropy of a molecule - t time - T absolute temperature Greek symbols as index: type of polymer molecule - as index: type of polymer molecule - shear as index: type of polymer molecule - shear rate - small variation; e.g. T is a small variation in T relative deviation Dirac delta distribution as index: type of polymer molecule - difference; e.g. is a difference in chemical potential - constant with dimension of absolute temperature - (complex) viscosity - constant with dimension of viscosity - [] intrinsic viscosity number - inverse of relaxation time - chemical potential - number pi; circle circumference divided by its diameter - mass per unit volume - relaxation time shear stress - angular frequency  相似文献   

11.
In the thermally developing region, d yy /dx| y=h varies along the flow direction x, where yy denotes the component of stress normal to the y-plane; y = ±h at the die walls. A finite element method for two-dimensional Newtonian flow in a parallel slit was used to obtain an equation relating d yy /dx/ y=h and the wall shear stress 0 at the inlet; isothermal slit walls were used for the calculation and the inlet liquid temperature T0 was assumed to be equal to the wall temperature. For a temperature-viscosity relation /0 = [1+(T–T0]–1, a simple expression [(hd yy /dx/ y=h )/ w0] = 1–[1-F c(Na)] [M()+P(Pr) ·Q(Gz –1)] was found to hold over the practical range of parameters involved, where Na, Gz, and Pr denote the Nahme-Griffith number, Graetz number, and Prandtl number; is a dimensionless variable which depends on Na and Gz. An order-of-magnitude analysis for momentum and energy equations supports the validity of this expression. The function F c(Na) was obtained from an analytical solution for thermally developed flow; F c(Na) = 1 for isothermal flow. M(), P(Pr), and Q(Gz) were obtained by fitting numerical results with simple equations. The wall shear rate at the inlet can be calculated from the flow rate Q using the isothermal equation.Notation x,y Cartesian coordinates (Fig. 2) - , dimensionless spatial variables [Eq. (16)] - dimensionless variable, : = Gz(x)–1 - dimensionless variable [Eq. (28)] - t,t * time, dimensionless time [Eq. (16)] - , velocity vector, dimensionless velocity vector - x , velocity in x-direction, dimensionless velocity - y , velocity in y-direction, dimensionless velocity - V average velocity in x-direction - yy , * normal stress on y-planes, dimensionless normal stress - shear stress on y-planes acting in x-direction - w , w * value of shear stress stress at the wall, dimensionless wall shear stress - w0, w0 * wall shear stress at the inlet, dimensionless variable - , * rate-of-strain tensor, dimensionless tensor - wall shear rate, wall shear rate at the inlet - Q flow rate - T, T 0, temperature, temperature at the wall and at the inlet, dimensionless temperature - h, w half the die height, width of the die - l,L the distance between the inlet and the slot region, total die length - T 2, T 3, T 4 pressure transducers in the High Shear Rate Viscometer (HSRV) (Fig. 1) - P, P2, P3 pressure, liquid pressures applied to T 2 and T 3 - , 0, * viscosity, viscosity at T = T 0, dimensionless viscosity - viscosity-temperature coefficient [Eq. (8)] - k thermal conductivity - C p specific heat at constant pressure - Re Reynolds number - Na Nahme-Griffith number - Gz Graetz number - Pr Prandtl number  相似文献   

12.
The rheological properties of rennet-induced skim milk gels were determined by two methods, i.e., via stress relaxation and dynamic tests. The stress relaxation modulusG c (t) was calculated from the dynamic moduliG andG by using a simple approximation formula and by means of a more complex procedure, via calculation of the relaxation spectrum. Either calculation method gave the same results forG c (t). The magnitude of the relaxation modulus obtained from the stress relaxation experiments was 10% to 20% lower than that calculated from the dynamic tests.Rennet-induced skim milk gels did not show an equilibrium modulus. An increase in temperature in the range from 20° to 35 °C resulted in lower moduli at a given time scale and faster relaxation. Dynamic measurements were also performed on acid-induced skim milk gels at various temperatures andG c (t) was calculated. The moduli of the acid-induced gels were higher than those of the rennet-induced gels and a kind of permanent network seemed to exist, also at higher temperatures. G storage shear modulus,N·m–2; - G loss shear modulus,N·m–2; - G c calculated storage shear modulus,N·m–2; - G c calculated loss shear modulus,N·m–2; - G e equilibrium shear modulus,N·m–2; - G ec calculated equilibrium shear modulus,N·m–2; - G(t) relaxation shear modulus,N·m–2; - G c (t) calculated relaxation shear modulus,N·m–2; - G *(t) pseudo relaxation shear modulus,N·m–2; - H relaxation spectrum,N·m–2; - t time,s; - relaxation time,s; - angular frequency, rad·s–1. Partly presented at the Conference on Rheology of Food, Pharmaceutical and Biological Materials, Warwick, UK, September 13–15, 1989 [33].  相似文献   

13.
The pseudoplastic flow of suspensions, alumina or styrene-acrylamide copolymer particles in water or an aqueous solution of glycerin has been studied by the step-shear-rate method. The relation between the shear rate,D, and the shear stress,, in the step-shear-rate measurements, where the state of dispersion was considered to be constant, was expressed as = AD 1/2 +CD. The effective solid volume fraction,ø F, andA were dependent on the shear rate and expressed byø F =aD b andA = D . Combining the above relations, the steady flow curve was expressed by = D 1/2 + + 0 (1 – a D b/0.74)–1.85 D, where 0 is the viscosity of the medium.With an increase in solid volume fraction and a decreases in the absolute value of the-potential, the flow behavior of the suspensions changed from Newtonian ( = = b = 0), slightly pseudoplastic ( = b = 0), pseudoplastic ( = 0) to a Bingham-like behavior.The change in viscosity of the medium had an effect on the change in the effective volume fraction.  相似文献   

14.
Dynamic material functions of polymeric systems are calculated via a defect-diffusion model. The random motion of defects is modelled by a fractaltime stochastic process. It is shown that the dynamic functions of polymeric solutions can be approximated by the defect-diffusion process of the mixed type. The relaxation modulus of Kohlrausch type is obtained for a fractal-time defect-diffusion process, and it is shown that this modulus is capable of portraying the dynamic behavior of typical viscoelastic solutions.The Fourier transforms of the Kohlrausch function are calculated to obtain and. A three-parameter model for and is compared with the previous calculations. Experimental measurements for five polymer solutions are compared with model predictions. D rate of deformation tensor - G(t) mechanical relaxation modulus - H relaxation spectrum - I(t) flux of defects - P n (s) probability of finding a walker ats aftern-steps - P generating function ofP n (s) - s(t) fraction of surviving defects - , () gamma function (incomplete) - 0 zero shear viscosity - * () complex viscosity - frequency - t n n-th moment - F[] Fourier transform - f * (u) Laplace transform off(t) - , components of * - G f, f * fractional model - G 3, 3 * three parameter model - complex conjugate ofz - material time derivative ofD  相似文献   

15.
A. Papo 《Rheologica Acta》1988,27(3):320-325
Shear stress and shear rate data obtained for gypsum plaster pastes were correlated by means of different rheological models. The pastes were prepared from a commercial calcium sulfate hemihydrate at various water/plaster ratios ranging from 100/150 to 100/190. The tests were performed at 25°C using a rotating coaxial cylinder viscosimeter. The measurements were accomplished by applying a step-wise decreasing shear rate sequence. Discrimination among the models was made: (1) on the basis of the fitting goodness; (2) by checking the physical meaning of the calculated parameters; (3) on the basis of the stability of the parameters and of their prediction capacity beyond the limits of the experimental data. In the light of above, the Casson model seemed to be most effective for application to gypsum plaster pastes. K Consistency - n Power-law index - N Number of experimental data - P Number of parameters - Shear rate (s–1) - 0 Viscosity (Pa · s) - d Dispersing medium viscosity (Pa · s) - p Plastic viscosity (Pa · s) - Viscosity at zero shear rate (Pa · s) - Viscosity at infinite shear rate (Pa · s) - [] Intrinsic viscosity - 2 Variance - Shear stress (Pa) - 0 Yield stress (Pa) - Solid volume fraction - m Maximum solid volume fraction  相似文献   

16.
The evolution of linear viscoelasticity during the vulcanization of polyethylene is studied through the gel point. The material in the vicinity of the gel point is described by two scaling laws: one characterizes the viscoelasticity at the critical point and a second characterizes the evolution of viscoelasticity near the gel point. Time Resolved Mechanical Spectroscopy is used to observe both scaling phenomena. The material at the gel point displays power law relaxation over five decades of time with a power-law relaxation exponent equal to 0.32. This study conforms with previous findings that this exponent is composition-dependent. The longest relaxation time diverges in the vicinity of the gel point as max |p c - p| –1/, and we find = 0.2. This result conforms with previous reports that this exponent may be independent of composition. The Arrhenius flow activation energy for this material undergoes three-fold changes during crosslinking up to the gel point. A single-adjustable-parameter stretched-exponential-power law relaxation function is an inadequate representation of crosslinked materials over any significant range of extent of the reaction up to the gel point.  相似文献   

17.
On the basis of a brief analysis of well known normal-stress calculation methods, the necessity of improved models of prediction is elaborated. A modified form of the so-called mirror relation which meets these requirements is presented. In combination with the Carreau viscosity equation, an analytical solution is given which leads to a Carreau normal-stress coefficient equation and, thus, to a simple method of calculation. The comparison between measured normal stresses and those determined by experiments shows that the values calculated in accordance with the presented method agree well with the measured values, especially within the range of high shear rates. The parameters andK to be selected for this purpose are determined in dependence on the slope of the viscosity function 1 at high shear rates for each polymer individually, using empirical relations so that the global selection of parameters, which is common practice with other methods, is obviated. In an appendix a method for deriving the relations between material functions on the basis of operator calculation is given.Extended version of a paper read at the 2nd Symposium on Rheology of the GDR in Tabarz/Thuringia, December 7–11, 1987  相似文献   

18.
An experimental investigation was undertaken to study the apparent thickening behavior of dilute polystyrene solutions in extensional flow. Among the parameters investigated were molecular weight, molecular weight distribution, concentration, thermodynamic solvent quality, and solvent viscosity. Apparent relative viscosity was measured as a function of wall shear rate for solutions flowing from a reservoir through a 0.1 mm I.D. tube. As increased, slight shear thinning behavior was observed up until a critical wall shear rate was exceeded, whereupon either a large increase in or small-scale thickening was observed depending on the particular solution under study. As molecular weight or concentration increased, decreased and, the jump in above , increased. increased as thermodynamic solvent quality improved. These results have been interpreted in terms of the polymer chains undergoing a coil-stretch transition at . The observation of a drop-off in at high (above ) was shown to be associated with inertial effects and not with chain fracture due to high extensional rates.  相似文献   

19.
The flow of a viscoelastic liquid driven by the steadily rotating bottom cover of a cylindrical cup is investigated. The flow field and the shape of the free surface are determined at the lowest significant orders of the regular domain perturbation in terms of the angular velocity of the bottom cap. The meridional field superposed on a primary azimuthal field shows a structure of multiple cells. The velocity field and the shape of the free surface are strongly effected by the cylinder aspect ratio and the elasticity of the liquid. The use of this flow configuration as a free surface rheometer to determine the first two Rivlin-Ericksen constants is shown to be promising.Nomenclature R, ,Z Coordinates in the physical domain D - , , Coordinates in the rest stateD 0 - r, ,z Dimensionless coordinates in the rest stateD 0 - Angular velocity - Zero shear viscosity - Surface tension coefficient - Density - Dimensionless surface tension parameter - 1, 2 The first two Rivlin-Ericksen constants - Stream function - Dimensionless second order meridional stream function - * Dimensionless second normal stress function - 2 Dimensionless sum of the first and second normal stress functions - N 1,N 2 The first and second normal stress functions - n Unit normal vector - D Stretching tensor - A n nth order Rivlin-Ericksen tensor - S Extra-stress - u Velocity field - U Dimensionless second order meridional velocity field - V Dimensionless first order azimuthal velocity field - p Pressure - Modified pressure field - P Dimensionless second order pressure field - J Mean curvature - a Cylinder radius - d Liquid depth at rest - D Dimensionless liquid depth at rest - h Free surface height - H Dimensionless free surface height at the second order  相似文献   

20.
If the viscosity can be expressed in the form = (T)f(), the walls are at a constant temperatureT 0, and the extra stress, velocity and temperature fields are fully developed, then the wall shear rate can be calculated by applying the Weissenberg-Rabinowitsch operator toF c Q instead of to the flow rateQ, whereF c is a correction factor which differs from 1 when the temperature field is non-uniform; the isothermal equation relating the wall shear stress and pressure gradient is still valid. For the case in whcih = 0|| n /(1 +(TT 0)), wheren, 0, and are independent of shear stress and temperatureT, an exact analytical expression forF c in terms of the Nahme-Griffith numberNa andn is obtained. Use of this expression gives agreement with data obtained for degassed decalin ( = 2.5 mPa s) from a new miniature slit-die viscometer at shear rates up to 5 × 106s–1; here, the correction is only 7%,Na is 1.3, andGz, the Graetz number at the die exit, is 119. For a Cannon standard liquidS6 ( = 9 mPa s), agreement extends up to 5 × 105s–1; at 2×106s–1 (whereNa = 7.2 andGz = 231), the corrections are 11% (measured) and 36% (calculated).Notation x, y Cartesian coordinates - v x ,v velocity inx-direction, dimensionless velocity - p xx ,p yy normal stress onx- andy-planes - N 1 first normal stress difference - shear stress ony-planes acting inx-direction - w value of shear stress at the wall - shear rate, shear rate at the wall - Q, Q flow rate (Eqs. (2.13), (2.15)) - T, T 0 temperature, temperature at the wall - ø, dimensionless temperature (Eqs. (2.24), (2.25)) - h, w half of die height, width of die - R diameter of a tube - , 0 viscosity, viscosity atT = T 0 - viscosity-temperature coefficient - k thermal conductivity - c p specific heat at constant pressure - n, m dimensionless parameters characterizing shear stress dependence of viscosity - Na Nahme Griffith number (Eq. (2.21)) - Gz Graetz number (Eq. (5.1)) - F c viscous heating correction factor (Eq. (2.18)) - ( ) a function characterizing temperature dependence of viscosity (Eq. (2.8)) - J k ( ) Bessel function of the first kind This paper is dedicated to Professor Hanswalter Giesekus on the occasion of his retirement as Editor of Rheologica Acta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号