首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitro-reduction by the vinyl halide radical cation CH2 = CH-X+* (X = Cl or Br) converts nitroaromatics into arylnitrenium ions, significant intermediates in carcinogenesis, and the present study reports on the scope and regioselectivity of this versatile reaction. The reaction is general for different kinds of substituted nitroaromatics; para/meta substitutents have little effect on the reaction while ortho substitutents result in low yields of arylnitrenium ions. The phenylnitrenium ion PhNH+ can be generated by chemical ionization (CI) of nitrobenzene using 1,2-dichloroethane as the reagent gas or by atmospheric pressure chemical ionization (APCI) of 1,2-dichloroethane solution doped with nitrobenzene. The chemical reactivities of the arylnitrenium ions include one-step ion/molecule reactions with nucleophiles ethyl vinyl ether and 1,3-dioxolanes, respectively, involving the direct formation of new CN bonds and synthesis of indole and benzomorpholine derivatives. The indole formation reaction parallels known condensed phase chemistry, while the concise morpholine-forming reaction remains to be sought in solution. The combination of collision-induced dissociation (CID) with novel ion/molecule reactions should provide a selective method for the detection of explosives such as TNT, RDX and HMX in mixtures using mass spectrometry. In addition to the reduction of the nitro group, reduction of methyl phenyl sulfone PhS(O)2Me to the thioanisole radical cation PhSMe+* occurs using the same chemical ionization reagent 1,2-dichloroethane. This probably involves an analogous reduction reaction by the reagent ion CH2 = CH-Cl+*.  相似文献   

2.
Reaction mechanisms of the unusual benzene imine N6 adduct formation in carcinogenic reactions of arylnitrenium ions with adenosine have been investigated with density functional theory (DFT) and high-level ab initio methods. The DFT calculations indicate that the reaction pathways initiated by attack of adenine at the ortho C site of 4-biphenylylnitrenium ion are favored. However, high-level MP2 and QCISD calculations provide a contrary conclusion, that is the reaction pathways initiated by attack of adenine at the para C site of 4-biphenylylnitrenium ion are more feasible. Comparing with experimental results, the conclusion from high-level ab initio calculations is ultimately supported. The present study makes a theoretical prediction on the final products in the studied reaction, which is in agreement with experimental observations. In addition, this study provides some inspirations to the attacks of arylnitrenium ions at amino group of purines and pyrimidines in similar carcinogenic reactions.  相似文献   

3.
Laser flash photolysis of perfluoro-4-biphenyl azide andN-propyl-4-azido-2,3,5,6-tetrafluorobenzylamide in acetonitrile, water-acetonitrile mixtures, and HCl-containing solutions was studied. The absorption spectra of primary intermediates, singlet arylnitrenes(2a(S) and2b(S), respectively), were recorded. The absolute rate constants of their intersystem crossing in MeCN were measured, and the corresponding Arrhenius parameters were found from the temperature dependences of the rate constants of isomerization of singlet arylnitrenes2a(S) and2b(S) to azirines. Protonation of singlet arylnitrenes2a(S) and2b(S) was observed, the rate constants of their protonation were measured, and the transient absorption spectra of arylnitrenium ions were recorded. It was shown by quantum-chemical calculations (the hybrid B3LYP method) that the arylnitrenium ions that formed have the singlet ground state and the singlet-triplet gap is ∼20 kcal mol−1. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 49–54, January, 2000.  相似文献   

4.
Dimethyl ether (DME) chemical ionization mass spectrometry with introduction by direct exposure desorption was utilized for the characterization of a variety of nitramines, nitroaromatics and related compounds. For the nitramines and for many of the nitroaromatics the most abundant ions were fragment-molecule adduct ions resulting from ion-molecule reactions with the reagent gas. Nitroaromatic positional isomers were readily distinguished by large differences in the abundances of the various adduct ions. For the nitramines, collision-induced dissociations of the prominent methoxymethylene adduct ions were studied and contrasted with those of the corresponding adducts derived from DME-d6 as reagent gas.  相似文献   

5.
利用光解芳基叠氮化合物得到单重态氮宾,运用纳秒瞬态吸收光谱、瞬态共振拉曼光谱实验手段,辅以密度泛函理论(DFT)计算,研究了4'-硝基-4-联苯氮宾在乙腈和水溶液中的光化学反应中间体。实验结果表明,在非质子溶剂中, 4'-硝基-4-联苯氮宾发生系间窜越反应生成三线态氮宾;在质子溶剂中,单重态氮宾可被质子化产生氮宾离子。与4-联苯氮宾和氮宾离子相比,硝基对单重态氮宾系间窜越反应路径影响很小;降低了氮宾离子与水和叠氮阴离子的反应活性,却提高了其与鸟苷的反应活性。  相似文献   

6.
Laser flash photolysis of perfluoro-4-biphenyl azide andN-propyl-4-azido-2,3,5,6-tetrafluorobenzylamide in acetonitrile, water-acetonitrile mixtures, and HCl-containing solutions was studied. The absorption spectra of primary intermediates, singlet arylnitrenes(2a(S) and2b(S), respectively), were recorded. The absolute rate constants of their intersystem crossing in MeCN were measured, and the corresponding Arrhenius parameters were found from the temperature dependences of the rate constants of isomerization of singlet arylnitrenes2a(S) and2b(S) to azirines. Protonation of singlet arylnitrenes2a(S) and2b(S) was observed, the rate constants of their protonation were measured, and the transient absorption spectra of arylnitrenium ions were recorded. It was shown by quantum-chemical calculations (the hybrid B3LYP method) that the arylnitrenium ions that formed have the singlet ground state and the singlet-triplet gap is ∼20 kcal mol−1. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 49–54, January, 2000.  相似文献   

7.
Density functional theory (UB3LYP/6-31G(d,p)) was used to determine substituent effects on the singlet-triplet-state energy gap for 21 meta-substituted phenylnitrenium ions. It was found that strongly electron-donating substituents stabilize the triplet state relative to the singlet state. With sufficiently strong meta electron donors (e.g., m,m'-diaminophenylnitrenium ion) the triplet is predicted to be the ground state. Analysis of equilibrium geometries, Kohn-Sham orbital distributions, and Mulliken spin densities for the triplet states of this series of nitrenium ions leads to the conclusion that there are two spatially distinct types of low-energy triplet states. Simple arylnitrenium ions such as phenylnitrenium ions as well as those having electron-withdrawing or weakly donating meta substituents have lowest-energy triplet states that are n,pi in nature. That is, one singly occupied molecular orbital is orthogonal to the plane of the phenyl ring and one is coplanar. These n,pi triplets are generally characterized by large ArNH bond angles (ca. 130-132 degrees ) and an NH bond that is perpendicular to the plane of the phenyl ring. In contrast, meta donor arylnitrenium ions have a lowest-energy triplet state best described as pi,pi. That is, both singly occupied molecular orbitals are orthogonal to the aromatic ring. Such pi,pi states are characterized by NH bonds that are coplanar with the phenyl ring and have ArNH bond angles that are more acute (ca. 110-111 degrees ). These triplet nitrenium ions have electronic structures analogous to those of meta-benzoquinodimethane derivatives.  相似文献   

8.
N-Methyl-N-1-naphthylnitrenium ion (2) was generated through photolysis of 1-(N-methyl-N-(1-naphthyl)amino)-2,4,6-trimethylpyridinium tetrafluoroborate (1). Laser flash photolysis (LFP) with time-resolved UV-vis (TRUV) detection as well as photoproduct analysis verified that the expected nitrenium ion was formed cleanly and rapidly following photolysis. Consistent with an earlier study, which used competitive trapping methods (Novak, M. et al. J. Org. Chem. 1999, 64, 6023-6031), it is found that 2 reacts rapidly with a variety of nucleophiles. The high reactivity of 2 relative to other arylnitrenium ions is discussed in terms of steric and electronic effects.  相似文献   

9.
Density functional theory (B3LYP/6-31G(d,p)) was used to predict the effect of meta substitution on aryl cationic (Ar-X+) species, including aryloxenium ions, arylsilylenium ions, arylnitrenium ions, and arylcarbenium ions. Multireference second-order perturbation theory (CASPT2) calculations were used to benchmark the quantitative accuracy of the DFT calculations for representative systems. Substituting the meta positions on these species with pi donors stabilizes a pi,pi* diradical state analogous to the well-known m-xylylene diradical. Notably, the 3,5-bis(N,N-dimethylamino)benzyl cation is predicted to have a triplet ground state by 1.9 kcal/mol by DFT and to have essentially degenerate singlet-triplet states at the CASPT2(10,9) level of theory. Adding electron-withdrawing CF3 groups to the exocyclic carbon of this meta-disubstituted benzyl cation further increases the predicted singlet-triplet gap in favor of the triplet. Other aryl cationic species substituted with strong pi electron-donating groups in the meta positions are predicted to have low-energy or ground-state triplet states. Systems analogous to the naphthaquinodimethane diradicals are also reported.  相似文献   

10.
Acetonitrile vapor and air are useful reagents for the selective detection of nitroaromatic compounds using atmospheric pressure ion/molecule reactions. Reagent ions CH2CN- and CN- generated from acetonitrile, and O-*, OH- and OOH- produced from the oxygen in air, react with vapor-phase and condensed-phase nitroaromatics in the course of atmospheric pressure chemical ionization (APCI) and desorption atmospheric pressure chemical ionization (DAPCI), respectively. The homogeneous and the heterogeneous phase reactions both lead to the formation of the same anionic adducts. These adducts have characteristic fragmentation patterns upon collisional activation, which makes these two reagents valuable for the selective detection of particular nitroaromatics, including explosives present as components of complex mixtures. Complementary information is available from the two reagents because their different chemistry facilitates analyte identification. DAPCI is demonstrated to be a useful ambient detection method for nitroaromatic explosives absorbed on surfaces.  相似文献   

11.
The geometries and energies of the electronic states of phenyloxenium ion 1 (Ph-O(+)) were computed at the multireference CASPT2/pVTZ level of theory. Despite being isoelectronic to phenylnitrene 4, the phenyloxenium ion 1 has remarkably different energetic orderings of its electronic states. The closed-shell singlet configuration ((1)A(1)) is the ground state of the phenyloxenium ion 1, with a computed adiabatic energy gap of 22.1 kcal/mol to the lowest-energy triplet state ((3)A(2)). Open-shell singlet configurations ((1)A(2), (1)B(1), (1)B(2), 2(1)A(1)) are significantly higher in energy (>30 kcal/mol) than the closed-shell singlet configuration. These values suggest a revision to the current assignments of the ultraviolet photoelectron spectroscopy bands for the phenoxy radical to generate the phenyloxenium ion 1. For para-substituted phenyloxenium ions, the adiabatic singlet-triplet energy gap (ΔE(ST)) is found to have a positive linear free energy relationship with the Hammett-like σ(+)(R)/σ(+) substituent parameters; for meta substituents, the relationship is nonlinear and negatively correlated. CASPT2 analyses of the excited states of p-aminophenyloxenium ion 5 and p-cyanophenyloxenium ion 10 indicate that the relative orderings of the electronic states remain largely unperturbed for these para substitutions. In contrast, meta-donor-substituted phenyloxenium ions have low-energy open-shell states (open-shell singlet, triplet) due to stabilization of a π,π* diradical state by the donor substituent. However, all of the other phenyloxenium ions and larger aryloxenium ions (naphthyl, anthryl) included in this study have closed-shell singlet ground states. Consequently, ground-state reactions of phenyloxenium ions are anticipated to be more closely related to closed-shell singlet arylnitrenium ions (Ar-NH(+)) than their isoelectronic arylnitrene (Ar-N) counterparts.  相似文献   

12.
We report a transient resonance Raman spectrum for the 2-fluorenylnitrenium ion obtained after photolysis of 2-azidofluorene. The 10 experimental Raman band frequencies of the transient spectrum show very good agreement with the computed frequencies from BPW91/cc-PVDZ density functional theory calculations for the 2-fluorenylnitrenium ion. Our results confirm the assignment of the approximately 460 nm transient absorption band formed after photolysis of 2-azidofluorene in water/acetonitrile or water solution to the singlet ground electronic state 2-fluorenylnitrenium ion. Our study indicates the 2-fluorenylnitrenium has a large degree of iminocyclohexadienyl cation character with significant delocalization of the charge over both phenyl rings of the fluorene moiety. We compare our results for the 2-fluoreneylnitrenium ion to those previously reported for several other arylnitrenium ions.  相似文献   

13.
This paper reports a transient resonance Raman and density functional theory study of the 4-acetamidophenylnitrenium ion in a mostly aqueous solvent. The transient Raman bands combined with results from density functional theory calculations indicate that the spectrum should be assigned to the singlet state of the 4-acetamidophenylnitrenium ion. The 4-acetamidophenylnitrenium ion was found to have a substantial iminocyclohexadienyl character comparable to previously studied para-phenyl-substituted phenylnitrenium ions and noticeable charge on both the acetamido and nitrenium moieties. The structure and properties of the 4-acetamidophenylnitrenium ion are compared to those of other arylnitrenium ions. We briefly discuss the chemical reactivity and selectivity of the para-acetamido-substituted phenylnitrenium ions compared to para-phenyl- or para-alkoxy-substituted phenylnitrenium ions.  相似文献   

14.
Although the photodissociation of nitroaromatics in low excitation electronic states has been extensively studied in recent decades, little is known about the highly excited electronic states. The fragmentation dynamics of three nitroaromatics, nitrobenzene, o-nitrotoluene, and m-nitrotoluene, in highly excited states, populated by the absorption of two photons at 271 nm, are studied with time-of-flight mass spectrometry. The temporal evolutions of the highly excited states are monitored by one-photon ionization at 408 nm. The transients of parent and fragment ions exhibit two ultrafast deactivation processes. The first process is ultrafast internal conversion from the initial excitation to Rydberg states in tens of femtoseconds. The second one is conversion from the Rydberg states to the vibrational manifold in the ground electronic states within hundreds of femtoseconds. The internal conversion process is accelerated by methyl substitution. In o-nitrotoluene, the two processes become much faster due to the hydrogen transfer from the CH(3) to the NO(2) group (ortho effect).  相似文献   

15.
A nanosecond time-resolved resonance Raman (ns-TR3) spectroscopic study of the reactions of the 2-fluorenylnitrenium ion with several C8-substituted guanosine derivatives is reported. The TR3 spectra show that the 2-fluorenylnitrenium ion reacts with the C8-substituted guanosine derivatives (C8-methylguanosine and C8-bromoguanosine) to produce C8 intermediates with the methyl and bromine moieties still attached to the intermediate species at the C8 position. The C8-bromoguanosine species was observed to be less reactive toward the 2-fluorenylnitrenium ion compared to the guanosine and C8-methylguanosine species. Comparison of the TR3 spectra to the results obtained from density functional theory calculations was used to characterize the C8 intermediates observed to learn more about their structure and properties. The implications of these results for the chemical reactivity of arylnitrenium ions toward substituted guanosine derivatives are briefly discussed.  相似文献   

16.
3-Nitrobenzanthrone (3-NBA) is a potent mutagen and suspected human carcinogen identified in diesel exhaust. The thermochemical formation cascades were calculated for six 3-NBA-derived DNA adducts employing its arylnitrenium ion as precursor using density functional theory (DFT). Clear exothermic pathways were found for four adducts, i.e., 2-(2'-deoxyadenosin-N(6)-yl)-3-aminobenzanthrone, 2-(2'-deoxyguanosin-N(2)-yl)-3-aminobenzanthrone, N-(2'-deoxyguanosin-8-yl)-3-aminobenzanthrone and 2-(2'-deoxyguanosin-8-yl)-3-aminobenzanthrone. All four have been observed to be formed in cell-free experimental systems. The formation of N-(2'-deoxyadenosin-8-yl)-3-aminobenzanthrone is predicted to be not thermochemically viable explaining its absence in either in vitro or in vivo model systems. However, 2-(2'-deoxyadenosin-8-yl)-3-aminobenzanthrone, can be formed, albeit not as a major product, and is a viable candidate for an unknown adenine adduct observed experimentally. 2-nitrobenzanthrone (2-NBA), an isomer of 3-NBA, was also included in the calculations; it has a higher abundance in ambient air than 3-NBA, but a much lower genotoxic potency. Similar thermochemical profiles were obtained for the calculated 2-NBA-derived DNA adducts. This leads to the conclusion that enzymatic activation as well as the stability of its arylnitrenium ion are important determinants of 2-NBA genotoxicity.  相似文献   

17.
The reactive intermediates N,N-di(4-chlorophenyl)nitrenium ion and N,N-di(4-bromophenyl)nitrenium ion were generated through photolysis of the corresponding N-amino(2,4,6,-collidinium) ions. The behavior of these diarylnitrenium ions was characterized by laser flash photolysis, analysis of the stable photoproducts, and ab initio calculations with density functional theory. The latter predict these species to have singlet ground states. The halogenated diarylnitrenium ions are significantly longer lived than the unsubstituted diphenylnitrenium ion. Specifically, cyclization to form carbazole derivatives occurs negligibly, if at all, with the halogenated derivatives. They do, however, carry out most of the characteristic reactions of singlet arylnitrenium ions, including combining with nucleophiles on the aryl rings, adding to arenes, and accepting electrons from readily oxidized traps. Interestingly these species also abstract H atoms from 1,4-cyclohexadiene and various phenol derivatives. The implication of the latter process in relation to the computed singlet-triplet energy gaps of ca. -12.5 kcal/mol is discussed.  相似文献   

18.
A variety of 2-aryl-3-arylamino-2-alkenenitriles were converted to N-arylindole-3-carbonitriles in a one-pot manner through NBS- or NCS-mediated halogenation followed by Zn(OAc)(2)-catalyzed intramolecular cyclization. It is postulated that the process involves the formation of arylnitrenium ion intermediates, which undergo the electrophilic aromatic substitution to give the cyclized N-arylindole product.  相似文献   

19.
A new sensor based on oxidative combustion of nitroaromatics to NO2 and its detection with a quartz crystal microbalance (QCM) coated with copper phthalocyanine (CuPc) was developed for determination of nitroaromatics in landfill gas. An alternative method based on gas chromatography–mass spectrometry (GC–MS) was also used in order to assess the performance of the proposed method. The results show that the analytical apparatus based on the QCM is less expensive than the GC–MS, and that the analytical error is 0.8% for both methods.  相似文献   

20.
We review and systematize experimental evidence concerning the extreme high-pressure kinetics of condensed phase nitroalkanes and nitroaromatics. This systematization suggests that enolate aci anions of the nitroalkanes and enolate aci-quinone anions of the nitroaromatics are important in the initial high-pressure kinetics of such systems. Kinetic data from experiments which observed the effect of: (1) small amounts of chemical additives, (2) substitution for protons, (3) difference in chemical isomer, (4) exposure to ultra-violet light, and (5) application of very high pressure can all be rationalized within the framework of our hypothesis. We suggest a static high-pressure ultra-violet absorption spectroscopy experiment on nitromethane that would test the proposed hypothesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号