首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reactions of mercury(II) halides with the tetraphosphinitoresorcinarene complexes [P4M5X5], where M=Cu or Ag, X=Cl, Br, or I, and P4=(PhCH2CH2CHC6H2)4(O2CR)4(OPPh2)4 with R=C6H11, 4-C6H4Me, C4H3S, OCH2CCH, or OCH2Ph, have been studied. The reactions of the complexes with HgX2 when M=Ag and X=Cl or Br occur with elimination of silver(I) halide and formation of [P4Ag2X(HgX3)], but when M=Ag and X=I, the complexes [P4Ag4I5(HgI)] are formed. When M=Cu and X=I, the products were the remarkable capsule complexes [(P4Cu2I)2(Hg2X6)]. When M=Ag and X=I, the reaction with both CuI and HgI2 gave the complexes [P4Cu2I(Hg2I5)]. Many of these complexes are structurally characterized as containing mercurate anions weakly bonded to cationic tetraphosphinitoresorcinarene complexes of copper(I) or silver(I) in an unusual form of host-guest interaction. In contrast, the complex [P4Ag4I5(HgI)] is considered to be derived from an anionic silver cluster with an iodomercury(II) cation. Fluxionality of the complexes in solution is interpreted in terms of easy, reversible making and breaking of secondary bonds between the copper(I) or silver(I) cations and the mercurate anions.  相似文献   

2.
1,2-双(四甲基环戊二烯基)四甲基二硅烷与正丁基锂作用生成(四甲基二硅撑)双(四甲基环戊二烯基负离子盐),后者随即与六碳基钼反应形成1,1'-(四甲基二硅撑)双(四甲基环戊二烯基铝负离子盐)-(Me2SiSiMe2)[Me4CpMo(CO)3-Li+]2(I),I与冰醋酸作用,随即分别与CCl4,NBS及I2反应,生成相应的铝卤化合物(Me2SiSiMe2)[Me4CpMo(CO)3X]2[X=Cl(1),Br(2),I(3)].I与CH3I反应,在钼原子上发生烃基化,得到产物(Me2SiSiMe2)[Me4CpMo(CO)3Me]2(4);I与单质I2直接反应,生成脱硅桥产物Me4Cp(CO)>3I(5).经元素分析、IR及1HNMR表征了化合物1-5的结构。  相似文献   

3.
Reaction of Tl(I)NO(3) and (C(4)H(10)N(4))Pt(II)(mnt) or (C(4)H(10)N(4))Pt(II)(dmg-H) [mnt = maleonitriledithiolate, dmg-H = dimethylglyoximate dianion] in dilute, aqueous KOH yielded adducts of Tl(I) and the conjugate bases of the platinum(II) compounds. The compound Tl(I)[(C(4)H(9)N(4))Pt(II)(dmg-H)].5H(2)O forms as dimers with close Tl(I)...Pt(II) separations of 3.0843(5) A, while Tl(I)[(C(4)H(9)N(4))Pt(II)(mnt)] has much longer Tl(I)...Pt(II) separations of 3.4400(2) A and forms loosely associated, helical coordination polymers. The new compounds are compared with the red and yellow polymorphs of Tl(I)[(C(4)H(9)N(4))Pt(II)(CN)(2)], and the influences of crystal packing forces, Coulombic interactions, and hydrogen bonding on supramolecular structures and Tl(I)...Pt(II) separations are discussed.  相似文献   

4.
Reaction of copper(I) iodide with pyridine-2-thione (2-SC5H4NH) and 1,2-bis(diphenylphosphino)ethane (dppe) in a CH3CN-CHCl3 mixture yielded a triangular cluster, [Cu3I3(mu2-P,P-dppe)3 (eta1-SC5H4NH)], 1. Similar reaction with 2-SC5H4NH and a series of diphosphanes, Ph2P-X-Ph2P {X = -CH2- (dppm), -(CH2)3- (dppp), -(CH2)4- (dppb), -CH=CH- (dppen)}, gave a novel iodo-bridged hexanuclear Cu(I) linear polymer,{Cu6(mu3-SC5H4NH)4 (mu2-SC5H4NH)2 (I4)(mu-I)2-}n x 2nCH3CN, 2. Reactions of copper(I) iodide/copper(I) bromide with 1,3-imidazolidine-2-thione (SC3H6N2) in a CH3CN-CHCl3 mixture yielded hexanuclear Cu(I) linear chain polymers, [{Cu6(mu3-SC3H6N2)2 (mu2-SC3H6N2)4X2 (mu-X)4}n] (X = Br, 4; I, 5). In compound 1, two iodide atoms and one dppe form the dinuclear Cu(mu2-I)2 (mu2-dppe)Cu core, and two dppe ligands bridge this core with the third Cu(I) center coordinated to 2-SC5H4NH via the S atom. The chain polymer 2 has a centrosymmetric hexanuclear central core, Cu6S6I4 (mu-I)2--, formed by dimerization of six-membered trinuclear motifs, Cu3(mu2-SC3H6N2)3I3 via (mu3-S) bonding modes of the thione ligand, and has four terminal and two bridging iodine atoms in trans-orientations. Linear chains are separated by the nonbonded acetonitrile molecules. In 4 and 5, three copper(I) bromide or copper(I) iodide moieties and three SC3H6N2 ligands combined via bridging S donor atoms to form the six-membered trinuclear Cu3(mu2-SC3H6N2)3I3 cores which polymerized via S and X atoms in a side-on fashion to form linear chain polymers, [{Cu6(mu3-SC3H6N2)2 (mu2-SC3H6N2)4X2(mu-X)4}n]. The (mu3-S) modes of bonding of neutral heterocyclic thioamides are first examples, as are trinuclear cluster and linear polymers rare examples in copper chemistry.  相似文献   

5.
The potentiometric titration of a γ-Keggin tetra-protonated silicodecatungstate, [γ-SiW(10)O(34)(H(2)O)(2)](4-) (H(4)·I), with TBAOH (TBA = [(n-C(4)H(9))(4)N](+)) showed inflection points at 2 and 3 equiv of TBAOH. The (1)H, (29)Si, and (183)W NMR data suggested that the in situ formation of tri-, doubly-, and monoprotonated silicodecatungstates, [γ-SiW(10)O(34)(OH)(OH(2))](5-) (H(3)·I), [γ-SiW(10)O(34)(OH)(2)](6-) (H(2)·I), and [γ-SiW(10)O(35)(OH)](7-) (H·I), with C(1), C(2v), and C(2) symmetries, respectively. Single crystals of TBA(6)·H(2)·I suitable for the X-ray structure analysis were successfully obtained and the anion part was a monomeric γ-Keggin divacant silicodecatungstate with two protonated bridging oxygen atoms. Compounds H(3)·I, H(2)·I, and H·I were reversibly monoprotonated to form H(4)·I, H(3)·I, and H(2)·I, respectively.  相似文献   

6.
A series of structurally characterized copper complexes of two pyridazine-spaced cryptands in redox states + (I,I), (II,I), (II), (II,II) are reported. The hexaimine cryptand L(I) [formed by the 2 + 3 condensation of 3,6-diformylpyridazine with tris(2-aminoethyl)amine (tren)] is able to accommodate two non-stereochemically demanding copper(I) ions, resulting in [Cu(I)(2)L(I)](BF(4))(2) 1, or one stereochemically demanding copper(II) ion, resulting in [Cu(II)L(I)()](BF(4))(2) 3. Complex 3 crystallizes in two forms, 3a and 3b, with differing copper(II) ion coordination geometries. Addition of copper(I) to the monometallic complex 3 results in the mixed-valence complex [Cu(I)Cu(II)L(I)](X)(3) (X = PF(6)(-), 2a; X = BF(4)(-), 2b) which is well stabilized within this cryptand as indicated by electrochemical studies (K(com) = 2.1 x 10(11)). The structurally characterized, octaamine cryptand L(A), prepared by sodium borohydride reduction of L(I), is more flexible than L(I) and can accommodate two stereochemically demanding copper(II) ions, generating the dicopper(II) cryptate [Cu(II)(2)L(A)](BF(4))(4) 4. Electrochemical studies indicate that L(A) stabilizes the copper(II) oxidation state more effectively than L(I); no copper redox state lower than II,II has been isolated in the solid state using this ligand.  相似文献   

7.
Sun H  Zhang Z  Pan Y  Yang J  Zhou X 《Inorganic chemistry》2003,42(13):4076-4081
The Si-Si bond in the title cyclic structure (1) exhibited unexpected stability toward I(2). Thus, the reaction of 1 with 1 equiv of I(2) in chloroform resulted in selective cleavage of the Fe-Fe bond to afford diiodide (Me(2)SiSiMe(2))[eta(5)-C(5)H(4)Fe(CO)(2)I](2) (2) with retention of the Si-Si bond. When excess (2-4 equiv) I(2) was used to react with 1 in either benzene or chloroform, iodonium-bridged diiron complex [(Me(2)SiSiMe(2))[eta(5)-C(5)H(4)Fe(CO)(2)](2)I(+)](I(5)(-)) (4) was obtained, in which the Si-Si bond was still retained. It is noteworthy that 4 contains a counteranion I(5)(-) rather than the expected I(3)(-), which is the first example for an iodonium-bridged diiron complex to combine a polyiodide anion larger than I(3)(-). UV irradiation of 2 did not affect the stability of the silicon-silicon bond and, in the presence of PR(3), resulted in CO substitution to give (Me(2)SiSiMe(2))[eta(5)-C(5)H(4)Fe(CO)(PR(3))I](2) (5, R = Ph; 6, R = OPh). The molecular structure of 2 was determined by the X-ray diffraction method. It is noteworthy that the structure of 2 does not take the expected anti conformation but adopts a gauche one. The length of the Si-Si bond of 2 [2.353(3) A] is about the same as that of 1 [2.346(4) A], which can be direct evidence to demonstrate that the Si-Si bond in the cyclic structure of 1 is not subject to significant ring strain. The molecular structure of 4 was also determined by the X-ray diffraction method. It is noted that the structure of 4 contains an abnormally large Fe-I(+)-Fe bond angle of 121.25(7) degrees. Of particular interest is the observation that the I(5)(-) anions of 4 are self-assembled into novel layered, two-dimensional networks with the (Me(2)SiSiMe(2))[eta(5)-C(5)H(4)Fe(CO)(2)](2)I(+) cations as the template.  相似文献   

8.
Chou CC  Su CC  Yeh A 《Inorganic chemistry》2005,44(17):6122-6128
The synthesis and structures of a mononuclear copper(I) carbonyl complex [Cu(OClO3)(CO)(H2CPz2')] (3) and a dinuclear copper(I) carbonyl complex [{Cu(CO)(H2CPz2')}2(mu-pyrazine)](ClO4)2 (4), where H2CPz2' = bis(3,5-dimethylpyrazol-1-yl)methane, are described. These two compounds were generated by the carbonylation of the corresponding copper(I)-acetonitrile complexes, [Cu(H2CPz2')(MeCN)](ClO4) (1) and [{Cu(H2CPz2')(MeCN)}2(mu-pyrazine)](ClO4)2 (2). Alternatively, treatment of mononuclear 1 and 3, respectively, with pyrazine in a molar ratio of 2:1 produces the pyrazine-bridged dinuclear Cu(I) complexes 2 and 4. Each of the complexes 1-4 can react with PPh3 to generate a common three-coordinated copper(I) complex [Cu(PPh3)(H2CPz2')](ClO4) (5). The structures of complexes 1-5 were all confirmed by X-ray crystallography. Comparison of the Cu(I)-C(CO) bond distances and the CO stretching frequencies of 3 and 4 indicates the back-donating properties of d pi(Cu)-pi*(pyrazine) bonds in 4, and accordingly, stabilizes the mixed-valence species generated from 2. Complex 3, stabilized by the strong interaction between copper(I) ion and perchlorate counteranion (Cu(I)-O(ClO4) = 2.240(3) A), is a potential precursor for polynuclear copper(I) carbonyl complexes.  相似文献   

9.
The reactions of the low-temperature polymorph of copper(I) cyanide (LT-CuCN) with concentrated aqueous alkali-metal halide solutions have been investigated. At room temperature, KX (X = Br and I) and CsX (X = Cl, Br, and I) produce the addition products K[Cu(2)(CN)(2)Br].H(2)O (I), K(3)[Cu(6)(CN)(6)I(3)].2H(2)O (II), Cs[Cu(3)(CN)(3)Cl] (III), Cs[Cu(3)(CN)(3)Br] (IV), and Cs(2)[Cu(4)(CN)(4)I(2)].H(2)O (V), with 3-D frameworks in which the -(CuCN)- chains present in CuCN persist. No reaction occurs, however, with NaX (X = Cl, Br, I) or KCl. The addition compounds, I-V, reconvert to CuCN when washed. Both low- and high-temperature polymorphs of CuCN (LT- and HT-CuCN) are produced, except in the case of Cs[Cu(3)(CN)(3)Cl] (III), which converts only to LT-CuCN. Heating similar AX-CuCN reaction mixtures under hydrothermal conditions at 453 K for 1 day produces single crystals of I-V suitable for structure determination. Under these more forcing conditions, reactions also occur with NaX (X = Cl, Br, I) and KCl. NaBr and KCl cause some conversion of LT-CuCN into HT-CuCN, while NaCl and NaI, respectively, react to form the mixed-valence Cu(I)/Cu(II) compounds [Cu(II)(OH(2))(4)][Cu(I)(4)(CN)(6)], a known phase, and [Cu(II)(OH(2))(4)][Cu(I)(4)(CN)(4)I(2)] (VI), a 3-D framework, which contains infinite -(CuCN)- chains. After 3 days of heating under hydrothermal conditions, the reaction between KI and CuCN produces [Cu(II)(OH(2))(4)][Cu(I)(2)(CN)I(2)](2) (VII), in which the CuCN chains are broken into single Cu-CN-Cu units, which in turn are linked into chains via iodine atoms and then into layers via long Cu-C and Cu-Cu interactions.  相似文献   

10.
Tetraphenylphosphonium triiodotetrabromide [PPh4][I3Br4] is obtained by the reaction of tetraphenylphosphonium bromide with iodine monobromide. It is the first example of an iodine rich, seven-membered polybromide. [PPh4][I3Br4] crystallizes triclinic in the space group P1 with a = 10.947(1) A, b = 11.945(1) A, c = 12.896(1) A, alpha = 66.80(1) degrees, beta = 77.21(1) degrees, gamma = 85.73(1) degrees, and two formula units per unit cell. The final R indices [I > 4 sigma(I)] are R1 = 0.0362 and wR2 = 0.0944.  相似文献   

11.
Silver(I) and copper(I) halide derivatives of several tetrakis(diphenylphosphinito)resorcinarene ligands are reported. The complexes [resorcinarene(O(2)CR)(4)(OPPh(2))(4)(M(5)X(5))], with resorcinarene = (PhCH(2)CH(2)CHC(6)H(2))(4), R = C(6)H(11), 4-C(6)H(4)Me, C(4)H(3)S, OCH(2)CCH, or OCH(2)Ph, M = Ag, X = Cl, Br, or I, M = Cu, and X = Cl or I, contain a crownlike [P(4)M(5)X(5)] metal halide cluster. These crown clusters were found to be dynamic in solution, as studied by variable-temperature NMR, and easily fragment to give the corresponding complexes containing [P(4)M(4)X(5)](-) and [P(4)M(2)(micro-X)](+) units. Reaction of pentasilver crown clusters with triflic acid gave the corresponding disilver complexes [resorcinarene(O(2)CR)(4)(OPPh(2))(4)]Ag(2)(micro-Cl)]]CF(3)SO(3). Thus, these resorcinarene-based ligands act as a platform for the easy and reversible assembly of copper(I) and silver(I) clusters with novel structures.  相似文献   

12.
Zhou XP  Li D  Zheng SL  Zhang X  Wu T 《Inorganic chemistry》2006,45(18):7119-7125
The reactions of 2,4,6-tri(2-pyridyl)-1,3,5-triazine (tpt) with copper(I) halides under solvothermal or traditional conditions yielded two polymeric Cu(I) complexes [Cu2I2(tpt)]n (1) and [Cu3I3(tpt)]n (2), one mixed-valence Cu(I)-Cu(II) complex [Cu4Cl2I4(tpt)2] (3), and two Cu(II) complexes [CuBr(bpca)] (4) and [CuI(bpca)] (5) (bpca = bis(2-pyridylcarbonyl)amine). Complex 1 is a zigzag chain with tpt in a bis-bipyridine-like coordination mode, whereas complex 2 with tpt chelating three Cu(I) cations is a ladderlike coordination polymer. Complex 3 is mixed-valence, with Cu(I) in a distorted tetrahedral geometry and Cu(II) in a distorted square pyramidal geometry, forming a ladderlike supramolecular chain. Complexes 4 and 5 are the products of in situ hydrolysis of tpt involving the oxidation of Cu(I). The synthesis and characterization of complex 1, 2, and 5 indicated that Cu(I) cannot promote the hydrolysis of tpt. The theoretical study shows that the main effect for hydrolysis of tpt is the electron-withdrawing effect of metal ions.  相似文献   

13.
Upon ionization of the P4S3I2 molecule with Ag[Al(OR)4], a highly reactive sulfonium cation P4S3I+ is generated (NMR simulated and assigned). At -80 degrees C this cation reacts with additional P4S3I2 to give either an iodophosphonium P4S3I3+ cation (NMR simulated and assigned) and P4S3 or to give several isomers of a metastable compound that is probably P8S3I3+. This mixture decomposes at 0 degrees C to give only three isomers of the spirocyclic P7S6I2+ cage cation (31P NMR simulated and assigned, X-ray of one isomer, IR assigned). The oxidation of the [Ag(P4S3)2]+ complex by I2 also resulted in the formation of P7S6I2+, but with more by-products. The spirocyclic 15-atom cage of P7S6I2+ has no precedent and contains the first phosphonium center bonded only to P and S atoms. This structural element gives the first experimental clue as to how formal charge-bearing elements in the still unknown class of binary P-Ch (Ch = chalcogen) or homopolyatomic P cations may be constructed.  相似文献   

14.
The reactions of cyclodiphosphazane cis-[tBuNP(OC6H4OMe-o)]2 (1) with 2 equiv of CuX in acetonitrile afforded one-dimensional Cu(I) coordination polymers [Cu2X2{tBuNP(OC6H4OMe-o)}2]n (2, X = Cl; 3, X = Br; 4, X = I). The crystal structures of 2 and 4 reveal a zigzag arrangement of [P(mu-N)(2)P] and [Cu(mu-X)(2)Cu] units in an alternating manner to form one-dimensional Cu(I) coordination polymers. The reaction between 1 and CuX in a 2:1 ratio afforded mononuclear tricoordinated copper(I) complexes of the type [CuX{(tBuNP(OC6H4OMe-o))2}2] (5, X = Cl; 6, X = Br; 7, X = I). The single-crystal structures were established for the mononuclear copper(I) complexes 5 and 6. When the reactant ratios are 1:1, the formation of a mixture of polymeric and mononuclear products was observed. The Cu(I) polymers (2-4) were converted into the mononuclear complexes (5-7) by reacting with 3 equiv of 1 in dimethyl sulfoxide. Similarly, the mononuclear complexes (5-7) were converted into the corresponding polymeric complexes (2-4) by reacting with 3 equiv of copper(I) halide under mild reaction conditions.  相似文献   

15.
Reaction of Mo2(pyphos)4 (1) with [MCl(CO)2]2 (M = Ir and Rh) afforded linear tetranuclear complexes of a formula Mo2M2(CO)2(Cl)2(pyphos)4 (2, M = Ir; 3, M = Rh). X-ray diffraction studies confirmed that two "MCl(CO)" fragments are introduced into both axial sites of the Mo2 core in 1 and coordinated by two PPh2 groups in a trans fashion, thereby forming a square-planar geometry around each M(I) metal. Treatment of 2 and 3 with an excess amount of tBuNC and XylNC induced dissociation of the carbonyl and chloride ligands to yield the corresponding dicationic complexes [Mo2M2(pyphos)4(tBuNC)4](Cl)2 (5a, M = Ir; 6a, M = Rh) and [Mo2M2(pyphos)4(XylNC)4](Cl)2 (7, M = Ir; 8, M = Rh). Their molecular structures were characterized by spectroscopic data as well as X-ray diffraction studies of BPh4 derivatives [Mo2M2(pyphos)4(tBuNC)4](BPh4)2 (5b, M = Ir; 6c, M = Rh), which confirmed that there is no direct sigma-bonding interaction between the M(I) atom and the Mo2 core. The M(I) atom in 5 and 6 can be oxidized by either 2 equiv of [Cp2Fe][PF6] or an equimolar amount of I2 to afford Mo(II)2M(II)2 complexes, [Mo2M2(X)2(tBuNC)4(pyphos)4]2+ in which two Mo-M(II) single bonds are formed and the bond order of the Mo-Mo moiety has been decreased to three. The Ir(I) complex 5a reacted not only with methyl iodide but also with dichloromethane to afford the 1,4-oxidative addition products [Mo2Ir2(CH3)(I)(tBuNC)4(pyphos)4](Cl)2 (13) and [Mo2Ir2(CH2Cl)(Cl)(tBuNC)4(pyphos)4](Cl)2 (15), respectively, although the corresponding reactions using the Rh(I) analogue 6 did not proceed. Kinetic analysis of the reaction with CH3I suggested that the 1,4-oxidative addition to the Ir(I) complex occurs in an SN2 reaction mechanism.  相似文献   

16.
李增春  G. SIMCHEN 《有机化学》1992,12(3):294-297
利用三氟甲基磺酸三甲基硅烷酯, 我们合成了一种新的、化学活性很高的合成中间产物2-(N-三氟乙酰-N-三甲基硅烷基)氨基-1, 1-二(三甲基硅烷氧基)乙烯。脂肪醛或芳香醛发生碳碳成键的加成反应, 生成β碳原子上带有易离去基团三甲基硅烷氧基、N原子上带有保护基团三氟乙酰基的α氨基酸三甲基硅烷酯。消除反应得到了一个合成α、β脱氢氨基酸的可行途径。这类化合物是合成复杂多肽和肽生物碱的基元物。  相似文献   

17.
Photodissociation (PD) mass spectra and mass selected (1+1)-photodissociation spectra of C(2)H(5)I(+?), C(2)D(5)I(+?),1- C(3)H(7)I(+?), 2-C(3)H(7)I(+?), 1-C(4)H(9)I(+?) and 2- C(4)H(9)I(+?) radical cations were studied within the ? ← X~ absorption band. The photodissociation mass spectra within the range 13,600-15,900 cm(-1) (1.68-1.97 eV) evidence only a simple cleavage of the C-I bond and formation of the corresponding alkyl ions. The resonant (1+1)-photodissociation spectra of C(2)H(5)I(+?) and C(2)D(5)I(+?) show intense vibrational structure in the excited ? state. The thresholds for formation of the states of C(2)H(5)I(+?) and C(2)D(5)I(+?) were estimated to be (13,278 ± 12) cm(-1) (1.6462 ± 0.0014 eV)and (13,363 ± 12) cm(-1) (1.6586 ± 0.0014 eV), respectively. Whereas a few resonant vibronic excitations could be identified with 1-C(3)H(7)I(+?) and 1- C(4)H(7)I(+), no vibrational features were observable with 2- C(3)H(7)I(+?) and 2-C(4)H(9)I(+?). It is concluded that 1- and 2-iodoalkane radical cations do not rearrange, even under the conditions of electron ionisation used to generate the molecular ions.  相似文献   

18.
An enhancement of luminescence properties in Er3+ doped ternary glasses is observed on the addition of PbO/PbF2. The infrared to visible upconversion emission bands are observed at 410, 525, 550 and 658 nm, due to the 2H9/2-->4I15/2, 2H11/2-->4I15/2, 4S3/2-->4I15/2, 4F9/2-->4I15/2 transitions respectively, on excitation with 797 nm laser line. A detailed study reveals that the 2H9/2-->4I15/2 transition arises due to three step upconversion process while other transitions arise due to two step absorption. On excitation with 532 nm radiation, ultraviolet and violet upconversion bands centered at 380, 404, 410 and 475 nm wavelengths are observed along with one photon luminescence bands at 525, 550, 658 and 843 nm wavelengths. These bands are found due to the 4G11/2-->4I15/2, 2P3/2-->4I13/2, 2H9/2-->4I15/2, 2P3/2-->4I11/2, 2H11/2-->4I15/2, 4S3/2-->4I15/2, 4F9/2-->4I15/2 and 4S3/2-->4I13/2 transitions, respectively. Though incorporation of PbO and PbF2 both enhances fluorescence intensities however, PbF2 content has an important influence on upconversion luminescence emission. The incorporation of PbF2 enhances the red emission (658 nm) intensity by 1.5 times and the violet emission (410 nm) intensity by 2.0 times. A concentration dependence study of fluorescence reveals the rapid increase in the red (4F9/2-->4I15/2) emission intensity relative to the green (4S3/2-->4I15/2) emission with increase in the Er3+ ion concentration. This behaviour has been explained in terms of an energy transfer by relaxation between excited ions.  相似文献   

19.
1,3,5-Tris{2'-[(pyrazol-1-yl)methyl]phenyl}benzene, 4, and its complexes with Cu(I) and Ag(I) have been prepared and characterized. Both CuI4 and AgI4 triflate crystallize in the rhombohedral space group R3, with the cations and anions each exhibiting crystallographically imposed 3-fold (C3) symmetry. In both complexes, 4 behaves as a tris(pyrazolyl) eta6-arene ligand whose arms act as three-pronged tweezers to form chiral, propeller-like cations with pyramidal MN(pyrazole)3 coordination geometries. Centers of symmetry in the space group ensure that the crystals are racemates, with equal numbers of P,P,P and M,M,M enantiomers. In broad outline, each cation is shaped like a three-legged stool, with the metal ion centered at the top and pointed downward from a triangular N(pyrazole) plane toward the center of gravity (Cg) of the central benzene ring (a metal-endo conformation), which constitutes the bottom shelf of the stool. The Cu(I)...Cg and Ag(I)...Cg distances, 3.195(2) and 3.165(2) A, respectively, support the existence of an eta6 bonding interaction with Ag(I) and, to a lesser extent, with Cu(I). NMR data for AgI4 suggest rapid interconversion of this cation in solution between P,P,P and M,M,M enantiomers. Our inability to prepare any Cu(II) complexes with 4 is consistent with cyclovoltammetric results, which suggest that the ligand is more easily oxidized than Cu(I).  相似文献   

20.
A 3D metal-organic framework, {[WS(4)Cu(4)(dpbp)(4)](2+)·[WS(4)Cu(3)(dpbp)(2)I(2)](-)·I(-)}(n)·xSolvent, [dpbp = 4,4'-di(4-pyridyl)biphenyl] with an unprecedent 8-fold non-equivalent interpenetration mode is presented, which contains four anionic and four cationic frameworks formed by tetranuclear [WS(4)Cu(3)I(2)](-) and pentanuclear [WS(4)Cu(4)](2+) SBUs with long dpbp ligands. Large rhombus-shaped tubes with diagonal dimensions of ~20 × 10 ? are formed in spite of high interpenetration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号