首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The leading heavy-top two-loop corrections to theZb \(\bar b\) vertex are determined from a direct evaluation of the corresponding Feynman diagrams in the largem t limit. The leading one-loop top-mass effect is enhanced by \([{{1 + G_\mu m_t^2 ({{9 - \pi ^2 } \mathord{\left/ {\vphantom {{9 - \pi ^2 } 3}} \right. \kern-0em} 3})} \mathord{\left/ {\vphantom {{1 + G_\mu m_t^2 ({{9 - \pi ^2 } \mathord{\left/ {\vphantom {{9 - \pi ^2 } 3}} \right. \kern-0em} 3})} {(8\pi ^2 \sqrt 2 )}}} \right. \kern-0em} {(8\pi ^2 \sqrt 2 )}}]\) . Our calculation confirms a recent result of Barbieri et al..  相似文献   

2.
Based on the conserved-vector-current (CVC) hypothesis and a four-ρ-resonance unitary and analytic VMD model of the pion electromagnetic form factor, theσ tot(E v lab ) and dσdE π lab of the weak \(\bar v_e e^ - \to \pi ^ - \pi ^0\) process are predicted theoretically for the first time. Their experimental approval could verify the CVC hypothesis for all energies above the two-pion threshold. Since, unlike the electromagnetic e+e?→π+π? process, there is no isoscalar vector-meson contribution to the weak \(\bar v_e e^ - \to \pi ^ - \pi ^0\) reaction, accurate measurements of theσ tot(E v lab ) that moreover is strengthened with energyE v lab linearly could solve now a widely discussed problem of the mass specification of the first excited state of theρ(770) meson. As a by-product, an equality \(\sigma _{tot} (\bar v_e e^ - \to \pi ^ - \pi ^0 ) = \sigma _{tot} (e^ + e^ - \to \pi ^ - \pi ^0 )\) is predicted for \(\sqrt s \approx 70 GeV\) .  相似文献   

3.
Using algebraic methods, we find the three-loop relation between the bare and physical couplings of one-flavourD-dimensional QED, in terms of Γ functions and a singleF 32 series, whose expansion nearD=4 is obtained, by wreath-product transformations, to the order required for five-loop calculations. Taking the limitD→4, we find that the \(\overline {MS} \) coupling \(\bar \alpha (\mu )\) satisfies the boundary condition $$\begin{gathered} \frac{{\bar \alpha (m)}}{\pi } = \frac{\alpha }{\pi } + \frac{{15}}{{16}}\frac{{\alpha ^3 }}{{\pi ^3 }} + \left\{ {\frac{{11}}{{96}}\zeta (3) - \frac{1}{3}\pi ^2 \log 2} \right. \hfill \\ \left. { + \frac{{23}}{{72}}\pi ^2 - \frac{{4867}}{{5184}}} \right\}\frac{{\alpha ^4 }}{{\pi ^4 }} + \mathcal{O}(\alpha ^5 ), \hfill \\ \end{gathered} $$ wherem is the physical lepton mass and α is the physical fine structure constant. Combining this new result for the finite part of three-loop on-shell charge renormalization with the recently revised four-loop term in the \(\overline {MS} \) β-function, we obtain $$\begin{gathered} \Lambda _{QED}^{\overline {MS} } \approx \frac{{me^{3\pi /2\alpha } }}{{(3\pi /\alpha )^{9/8} }}\left( {1 - \frac{{175}}{{64}}\frac{\alpha }{\pi } + \left\{ { - \frac{{63}}{{64}}\zeta (3)} \right.} \right. \hfill \\ \left. { + \frac{1}{2}\pi ^2 \log 2 - \frac{{23}}{{48}}\pi ^2 + \frac{{492473}}{{73728}}} \right\}\left. {\frac{{\alpha ^2 }}{{\pi ^2 }}} \right), \hfill \\ \end{gathered} $$ at the four-loop level of one-flavour QED.  相似文献   

4.
We estimate $BR(K \to \pi \nu \bar \nu )$ in the context of the Standard Model by fitting for λ tV tdV ts * of the “kaon unitarity triangle” relation. To find the vertex of this triangle, we fit data from |? K|, the CP-violating parameter describing K mixing, and a ψ,K , the CP-violating asymmetry in B d 0 J/ψK 0 decays, and obtain the values $\left. {BR(K \to \pi \nu \bar \nu )} \right|_{SM} = (7.07 \pm 1.03) \times 10^{ - 11} $ and $\left. {BR(K_L^0 \to \pi ^0 \nu \bar \nu )} \right|_{SM} = (2.60 \pm 0.52) \times 10^{ - 11} $ . Our estimate is independent of the CKM matrix element V cb and of the ratio of B-mixing frequencies ${{\Delta m_{B_s } } \mathord{\left/ {\vphantom {{\Delta m_{B_s } } {\Delta m_{B_d } }}} \right. \kern-0em} {\Delta m_{B_d } }}$ . We also use the constraint estimation of λ t with additional data from $\Delta m_{B_d } $ and |V ub|. This combined analysis slightly increases the precision of the rate estimation of $K^ + \to \pi ^ + \nu \bar \nu $ and $K_L^0 \to \pi ^0 \nu \bar \nu $ (by ?10 and ?20%, respectively). The measured value of $BR(K^ + \to \pi ^ + \nu \bar \nu )$ can be compared both to this estimate and to predictions made from ${{\Delta m_{B_s } } \mathord{\left/ {\vphantom {{\Delta m_{B_s } } {\Delta m_{B_d } }}} \right. \kern-0em} {\Delta m_{B_d } }}$ .  相似文献   

5.
Two short-lived isomeric states in118Sb have been investigated by the118Sn(p, n),118Sn(d, 2n) and115In(α, n) reactions. The TDPAD method on solid and liquid metallic targets was used to measure the electromagnetic moments of these states. The results of the experiments are: $$\begin{gathered} T_{1/2} = 13.4{\text{ }}(3){\text{ }}ns I^\pi = 3^ - {\text{ }}g = - 1.254(31){\text{ }}|Q| = 0.25{\text{ }}(5){\text{ }}b, \hfill \\ T_{1/2} = 22.8{\text{ }}(4){\text{ }}ns I^\pi = 7^ + {\text{ }}g = + 0.680(18){\text{ }}|Q| > 1.4{\text{ }}b. \hfill \\ \end{gathered}$$ Pure \([\pi 2d_{5/2} \otimes v1h_{1{\text{ }}1/2} ]_{3 - }\) and \([\pi 1g_{9/2}^{ - 1} \otimes v2d_{5/2}^{ - 1} ]_{7 + }\) configurations have been established for the two isomeric states. An experimental evidence concerning the participation of the 1g 9 2/?1 proton shell-model intruder excitation into the positive parity low-lying level structure of the odd-odd118Sb nucleus was obtained.  相似文献   

6.
We have measured the branching ratios for \(\bar pp\) annihilation at rest intoπ + π ? η andπ + π ? η′ in hydrogen gas in two data samples that have different fractions ofS-wave andP-wave initial states. The branching ratios are derived from a comparison with the topological branching ratio for \(\bar pp\) annihilations into four charged pions of (49±4)% and the branching ratio intoπ + π ? π + π ? π 0 of (18.7±1.6)%. We find a significant reduction of the branching ratios fromP-states for \(\bar pp \to \pi ^ + \pi ^ - \eta \) andπ + π ? η′ in comparison toS-state annihilation. $$\begin{gathered} BR(S - wave \to \pi ^ + \pi ^ - \eta ) = (13.7 \pm 1.46) \cdot 10^{ - 3} \hfill \\ BR(P - wave \to \pi ^ + \pi ^ - \eta ) = (3.35 \pm 0.84) \cdot 10^{ - 3} \hfill \\ BR(S - wave \to \pi ^ + \pi ^ - \eta ') = (3.46 \pm 0.67) \cdot 10^{ - 3} \hfill \\ BR(P - wave \to \pi ^ + \pi ^ - \eta ') = (0.61 \pm 0.33) \cdot 10^{ - 3} . \hfill \\ \end{gathered} $$ In a partial wave analysis of theπ + π ? η Dalitz plot we find the following contributions: Phase space, \(a_2^ + (1320)\pi ^ \mp \) ,ηρ0 andf 2(1270)η: $$\begin{gathered} BR(S - wave \to \pi ^ + \pi ^ - \eta PS) = (6.31 \pm 1.22) \cdot 10^{ - 3} \hfill \\ BR(P - wave \to \pi ^ + \pi ^ - \eta PS) = (0.47 \pm 0.26) \cdot 10^{ - 3} \hfill \\ BR(^1 S_0 \to a_2^ \pm (1320)\pi ^ \mp ) = (2.59 \pm 0.73) \cdot 10^{ - 3} \hfill \\ BR(^3 S_1 \to a_2^ \pm (1320)\pi ^ \mp ) = (1.31 \pm 0.48) \cdot 10^{ - 3} \hfill \\ BR(P - wave \to a_2^ \pm (1320)\pi ^ \mp ) = (1.31 \pm 0.69) \cdot 10^{ - 3} \hfill \\ BR(^3 S_1 \to \rho \eta ) = (3.29 \pm 0.90) \cdot 10^{ - 3} \hfill \\ BR(^1 P_1 \to \rho \eta ) = (0.94 \pm 0.53) \cdot 10^{ - 3} \hfill \\ BR(^1 S_0 \to f_2 (1270)\eta ) = (0.083 \pm 0.086) \cdot 10^{ - 3} \hfill \\ BR(P - wave \to f_2 (1270)\eta ) = (0.64 \pm 0.26) \cdot 10^{ - 3} . \hfill \\ \end{gathered} $$ We find a 2 σ effect for the reaction \(\bar pp \to a_0^ \pm (980)\pi ^ \mp \) , \(a_0^ \pm \to \eta \pi ^ \pm \) , with a branching ratio of (0.13±0.07)·10?3. For η' production we give a branching ratio of \(\bar pp \to \rho \eta '\) of (1.81±0.44)·10?3 from3 S 1. We estmate a contribution of about 0.3·10?3 for ρη' fromP-states. The ratio of ρη and ρη' rpoduction is used to test the validity of the quark line rule. In theπ + π ? π + π ? γ final state we do not observe the reaction \(\bar pp \to \pi ^ + \pi ^ - \omega \) , ω→π + π ? λ and derive an upper limit of 3·10?3 for decay modeωπ + π ? λ.  相似文献   

7.
Let $\varPhi_{t,\pi}: M_{3}({\mathbb{C}}) \rightarrow M_{3}({\mathbb{C}})$ be a linear map defined by $\varPhi_{t,\pi}(A)=(3-t)\*\sum_{i=1}^{3}E_{ii}AE_{ii}+t\sum_{i=1}^{3}E_{i,\pi (i)}AE_{i,\pi(i)}^{\dag}-A$ , where 0≤t≤3 and π is a permutation of (1,2,3). We show that the Hermitian matrix $W_{\varPhi_{t,\pi}}$ induced by Φ t,π is an optimal entanglement witness if and only if t=1 and π is cyclic.  相似文献   

8.
The CNDO/S method has been applied to the internal effect of Si on the electronic spectrum of the acetone molecule; there is a considerable bathochromic shift and an increase in the \(S_0 \to S_{n\pi ^ * } \) intensity for theα-silyl ketones, while theβ-silyl ketons give only an increase in the intensity of \(S_0 \to S_{n\pi ^ * } \) absorption relative to acetone. The heavy atom substantially alters \(f_{S_0 \to T_{n\sigma ^* } } \) and \(\tau _{T_{n\sigma ^* } }^0 \) but has little effect on \(f_{S_0 \to T_{n\pi ^* } } \) and \(\tau _{T_{n\pi ^* } }^0 \) .  相似文献   

9.
The cross section of the quasi-elastic reactions \(\bar v_\mu p \to \mu ^ + \Lambda (\Sigma ^0 )\) in the energy range 5–100 GeV is determined from Fermilab 15′ bubble chamber antineutrino data. TheQ 2 analysis of quasi-elastic Λ events yieldsM A=1.0±0.3 GeV/c2 for the axial mass value. With zero µΛ K 0 events observed, the 90% confidence level upper limit \(\sigma (\bar v_\mu p \to \mu ^ + \Lambda {\rm K}^0 )< 2.0 \cdot 10^{ - 40} cm^2 \) is obtained. At the same time, we found that the cross section of reaction \(\bar v_\mu p \to \mu ^ + \Lambda {\rm K}^0 + m\pi ^0 \) is equal to \(\left( {3.9\begin{array}{*{20}c} { + 1.6} \\ { - 1.3} \\ \end{array} } \right) \cdot 10^{ - 40} cm^2 \) .  相似文献   

10.
Theg-factor of the 2+ rotational state of184W was redetermined by an IPAC measurement in an external magnetic field of 9.45 (5)T as: $$g_{2^ + } (^{184} W) = + 0.289(7).$$ In the evaluation the remeasured half-life of the 2+ state: $$T_{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} (2^ + ) = 1.251(12)ns$$ was used. TDPAC-measurements with a sample of carrierfree184Re in high purity iron gave the hyperfine fields: $$B_{300 K}^{hf} (^{184} W_2 + \underline {Fe} ) = 70.1(21)T$$ and $$B_{40 K}^{hf} (^{184} W_{2^ + } \underline {Fe} ) = 71.8(22)T.$$ A comparison with the hyperfine field known from a spin echo experiment with183W g Fe leads to the hyperfine anomaly: $$^{184} W_{2^ + } \Delta ^{183} W_g = + 0.145(36).$$ The hyperfine splitting observed in a Mössbauer source experiment with another sample of carrierfree184m Re in high purity iron indicates that the smaller splitting, measured previously by a Mössbauer absorber experiment is due to the high tungsten concentration in the absorber. The new value for theg-factor of the 2+ state together with the result of the Mössbauer experiment allow an improved calibration for our recent investigation of theg R -factors of the 4+ and 6+ rotational states. The recalculated values are: $$g_{4^ + } (^{184} W) = + 0.293(23)$$ and $$g_{6^ + } (^{184} W) = + 0.299(43).$$ The remeasured 792-111 keVγ-γ angular correlation $$W(\Theta ) = 1 - 0.034(4) \cdot P_2 + 0.325(6) \cdot P_4 $$ gives for the mixing ratio of theK-forbidden 792keV transition: $$\delta ({{E2} \mathord{\left/ {\vphantom {{E2} {M1}}} \right. \kern-\nulldelimiterspace} {M1}}) = - \left( {17.6\begin{array}{*{20}c} { + 1.8} \\ { - 1.5} \\ \end{array} } \right).$$ A detailed investigation of the attenuation ofγ-γ angular correlations in liquid sources of184Re and184m Re revealed the reason for erroneous results of early measurements of the 2+ g R -factor: The time dependence of the perturbation is not of a simple exponential type. It contains an unresolved strong fast component.  相似文献   

11.
The concentration of lithium ions in the cathode of lithium ion cells has been obtained by solving the materials balance equation $$\frac{{\partial c}}{{\partial t}} = \varepsilon ^{1/2} D\frac{{\partial ^2 c}}{{\partial x^2 }} + \frac{{aj_n (1--t_ + )}}{\varepsilon }$$ by Laplace transform. On the assumption that the cell is fully discharged when there are zero lithium ions at the current collector of the cathode, the discharge timet d is obtained as $$\tau = \frac{{r^2 }}{{\pi ^2 \varepsilon ^{1/2} }}\ln \left[ {\frac{{\pi ^2 }}{{r^2 }}\left( {\frac{{\varepsilon ^{1/2} }}{J} + \frac{{r^2 }}{6}} \right)} \right]$$ which, when substituted into the equationC=It d /M, whereI is the discharge current andM is the mass of the separator and positive electrode, an analytical expression for the specific capacity of the lithium cell is given as $$C = \frac{{IL_c ^2 }}{{\pi {\rm M}D\varepsilon ^{1/2} }}\ln \left[ {\frac{{\pi ^2 }}{2}\left( {\frac{{FDc_0 \varepsilon ^{3/2} }}{{I(1 - t_ + )L_c }} + \frac{1}{6}} \right)} \right]$$   相似文献   

12.
We have studied the reactions \(({{\pi ^ + } \mathord{\left/ {\vphantom {{\pi ^ + } p}} \right. \kern-0em} p})p \to ({{\pi ^ + } \mathord{\left/ {\vphantom {{\pi ^ + } p}} \right. \kern-0em} p})(K\bar K\pi )p\) where the \(K\bar K\pi \) system is centrally produced, at 85 GeV/c and 300 GeV/c using the CERN Omega spectrometer. A spin-parity analysis of theK S 0 K ± π ? system shows the presence of a strongJ PC=1++ signal which we identify as theE/f 1 (1420) meson. We also find evidence for the decayE/f 1(1420)→K S 0 K S 0 π 0 which determines theC-parity of this state to be positive. Alternative explanations of the data have been tested and ruled out. Hence we obtain the quantum numbers of theE/f 1 (1420) to beI G(JPC)=0+(1+).  相似文献   

13.
The branching ratios of \(p\bar p\) annihilations into the neutral final states 2π0, π0γ, and 2γ are measured by stopping antiprotons in liquid hydrogen. They are \(B_{2\pi ^0 } = \left( {2.06 \pm 0.14} \right) \times 10^{ - 4} \) , \(B_{\pi ^0 \gamma } = \left( {1.74 \pm 0.22} \right) \times 10^{ - 5} \) , andB γγ<1.7×10?6 (95% c.l.).  相似文献   

14.
We calculate, exactly, the next-to-leading correction to the relation between the \(\overline {MS} \) quark mass, \(\bar m\) , and the scheme-independent pole mass,M, and obtain $$\begin{gathered} \frac{M}{{\bar m(M)}} \approx 1 + \frac{4}{3}\frac{{\bar \alpha _s (M)}}{\pi } + \left[ {16.11 - 1.04\sum\limits_{i = 1}^{N_F - 1} {(1 - M_i /M)} } \right] \hfill \\ \cdot \left( {\frac{{\bar \alpha _s (M)}}{\pi }} \right)^2 + 0(\bar \alpha _s^3 (M)), \hfill \\ \end{gathered} $$ as an accurate approximation forN F?1 light quarks of massesM i <M. Combining this new result with known three-loop results for \(\overline {MS} \) coupling constant and mass renormalization, we relate the pole mass to the \(\overline {MS} \) mass, \(\bar m\) (μ), renormalized at arbitrary μ. The dominant next-to-leading correction comes from the finite part of on-shell two-loop mass renormalization, evaluated using integration by parts and checked by gauge invariance and infrared finiteness. Numerical results are given for charm and bottom \(\overline {MS} \) masses at μ=1 GeV. The next-to-leading corrections are comparable to the leading corrections.  相似文献   

15.
The determination of the polarization of6Li-ions is discussed. It is shown, that independent of the reaction mechanism the following relations between the analysing powers for polarized deuterons and polarized6Li-ions hold for the6Li(d, α)4He-reaction: for all scattering angles \(\vartheta : A_{y y}^{(d)} (E, \vartheta ) = A_{y y}^{(Li)} (E, \vartheta )\) for the scattering angle \(\vartheta = \pi /2\) only: $$A_{z z}^{(d)} (E, \vartheta = \pi /2) = A_{z z}^{(Li)} (E, \vartheta = \pi /2)$$ and $$A_{x x - y y}^{(d)} (E, \vartheta = \pi /2) = A_{x x - y y}^{(Li)} (E, \vartheta = \pi /2)$$ . Using these identities the determination of the polarization of6Li-beams is reduced to the experimentally well established determination of the polarization of deuterons.  相似文献   

16.
We derive model independent lower bounds for the sums of effective quark masses \(\bar m_u + \bar m_d \) and \(\bar m_u + \bar m_s \) . The bounds follow from the combination of the spectral representation properties of the hadronic axial currents two-point functions and their behavior in the deep euclidean region (known from a perturbative QCD calculation to two loops and the leading non-perturbative contribution). The bounds incorporate PCAC in the Nambu-Goldstone version. If we define the invariant masses \(\hat m\) by $$\bar m_i = \hat m_i \left( {{{\frac{1}{2}\log Q^2 } \mathord{\left/ {\vphantom {{\frac{1}{2}\log Q^2 } {\Lambda ^2 }}} \right. \kern-\nulldelimiterspace} {\Lambda ^2 }}} \right)^{{{\gamma _1 } \mathord{\left/ {\vphantom {{\gamma _1 } {\beta _1 }}} \right. \kern-\nulldelimiterspace} {\beta _1 }}} $$ and <F 2> is the vacuum expectation value of $$F^2 = \Sigma _a F_{(a)}^{\mu v} F_{\mu v(a)} $$ , we find, e.g., $$\hat m_u + \hat m_d \geqq \sqrt {\frac{{2\pi }}{3} \cdot \frac{{8f_\pi m_\pi ^2 }}{{3\left\langle {\alpha _s F^2 } \right\rangle ^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} }}} $$ ; with the value <α u F 2?0.04GeV4, recently suggested by various analysis, this gives $$\hat m_u + \hat m_d \geqq 35MeV$$ . The corresponding bounds on \(\bar m_u + \bar m_s \) are obtained replacingm π 2 f π bym K 2 f K . The PCAC relation can be inverted, and we get upper bounds on the spontaneous masses, \(\hat \mu \) : $$\hat \mu \leqq 170MeV$$ where \(\hat \mu \) is defined by $$\left\langle {\bar \psi \psi } \right\rangle \left( {Q^2 } \right) = \left( {{{\frac{1}{2}\log Q^2 } \mathord{\left/ {\vphantom {{\frac{1}{2}\log Q^2 } {\Lambda ^2 }}} \right. \kern-\nulldelimiterspace} {\Lambda ^2 }}} \right)^d \hat \mu ^3 ,d = {{12} \mathord{\left/ {\vphantom {{12} {\left( {33 - 2n_f } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {33 - 2n_f } \right)}}$$ .  相似文献   

17.
The decay modesΣ ± ± γ, Σ +,Σ + →pe + e }- were studied in the 81 cm Saclay hydrogen bubble chamber. In the radiative decayΣ ± ± γ only low momentum pions which stop in the chamber were accepted. We obtain the following branching ratios: (1) $$\frac{{\Gamma {\text{(}}\sum ^{\text{ + }} \to n\pi ^ + \gamma , p_{\pi + }^*< 110{\text{ MeV/c)}}}}{{\Gamma {\text{(}}\sum ^{\text{ + }} \to n\pi ^ + )}} = (2.7 \pm 0.5) \times 10^{ - 4} ,$$ (2) $$\frac{{\Gamma {\text{(}}\sum ^ - \to n\pi ^ - \gamma , p_{\pi - }^*< 110{\text{ MeV/c)}}}}{{\Gamma {\text{(}}\sum ^ - \to n\pi ^ - )}} = (1.0 \pm 0.2) \times 10^{ - 4} ,$$ (3) $$\frac{{\Gamma {\text{(}}\sum ^ + \to p\gamma {\text{)}}}}{{\Gamma {\text{(}}\sum ^ + \to p\pi ^0 )}} = (2.1 \pm 0.3) \times 10^{ - 3} ,$$ (4) $$\frac{{\Gamma {\text{(}}\sum ^ + \to pe^ + e^ - {\text{)}}}}{{\Gamma {\text{(}}\sum ^ + \to p\pi ^0 )}} = (1.5 \pm 0.9) \times 10^{ - 5} .$$ The radiative branching ratios (1) and (2) agree well with theoretical calculations and confirm very strongly the assignmentS wave toΣ ? →nπ ? andP wave toΣ + + decay. The branching ratio (4) is based on 3 events with very low invariant masses of the electron-positron pair, being most probably radiative decays with internal conversion of theγ-ray. Combining (3) and (4) we obtain for the conversion coefficientρ: in agreement with predictions from electrodynamics.  相似文献   

18.
The average multiplicities of charged hadrons and of π+, π? and π0 mesons, produced in \(\bar v\) Ne and νNe charged current interactions in the forward and backward hemispheres of theW ±-nucleon center of mass system, are studied with data from BEBC. The dependence of the multiplicities on the hadronic mass (W) and on the laboratory rapidity (y Lab) and the energy fraction (z) of the pion is also investigated. Special care is taken to determine the π0 multiplicity accurately. The ratio of average π multiplicities \(\frac{{2\left\langle {n_{\pi ^O } } \right\rangle }}{{[\left\langle {n_{\pi ^ + } } \right\rangle + \left\langle {n_{\pi ^ - } } \right\rangle ]}}\) is consistent with 1. In the backward hemisphere \(\left\langle {n_{\pi ^O } } \right\rangle \) is positively correlated with the charged multiplicity. This correlation, as well as differences in multiplicities between \(\mathop v\limits^{( - )} \) and \(\mathop v\limits^{( - )} \) , \(\mathop v\limits^{( - )} \) scattering, is attributed to reinteractions inside the neon nucleus of the hadrons produced in the initial \(\mathop v\limits^{( - )} \) interaction.  相似文献   

19.
g-factors of rotational states in176Hf and180Hf were measured with the twelve detector IPAC-apparatus of our laboratory [1]. The natural radioactivity 3.78·1010y176Lu and the 5.5 h isomer180mHf were used which populate the ground-state rotational bands of176Hf and180Hf. The integral rotations ofγ-γ directional correlations in strong external magnetic fields and in static hyperfine fields of (Lu→Hf)Fe2 and HfFe2 were observed. The following results were obtained: $$\begin{array}{l} ^{176} Hf: g\left( {4_1^ + } \right) = + 0.334\left( {38} \right) \\ ^{180} Hf: g\left( {2_1^ + } \right) = + 0.305\left( {14} \right) \\ g\left( {4_1^ + } \right) = + 0.358\left( {43} \right) \\ {{ g\left( {6_1^ + } \right)} \mathord{\left/ {\vphantom {{ g\left( {6_1^ + } \right)} {g\left( {4_1^ + } \right)}}} \right. \kern-\nulldelimiterspace} {g\left( {4_1^ + } \right)}} = + 0.95\left( {12} \right) \\ \end{array}$$ . The hyperfine field in (Lu→Hf)Fe2 was calibrated by observing the integral rotation of the 9/2? first excited state of177Hf populated in the decay of 6.7d177Lu. Theg-factor of this state was redetermined in an external magnetic field as $$^{177} Hf: g\left( {{9 \mathord{\left/ {\vphantom {9 {2^ - }}} \right. \kern-\nulldelimiterspace} {2^ - }}} \right) = + 0.228\left( 7 \right)$$ . Finally theg-factor of the 2 1 + state of176Hf was derived from the measuredg(2 1 + ) of180Hf by use of the precisely known ratiog(2 1 + ,176Hf)/g(2 1 + ,180Hf) [2] as $$^{176} Hf: g\left( {2_1^ + } \right) = + 0.315\left( {30} \right)$$ .  相似文献   

20.
We interpret the recently observedU(3.1) mesons with the \(\Lambda \bar p\) + pions decays as the bound state of \(\Lambda ,\bar p\) andX 0(1480). TheX 0(1480) is a mesonium with \(Q^2 \bar Q^2 \) structures observed in γγ reactions and \(\bar pn\) annihilations. With this interpretation, we can understand its decay modes. Furthermore, we predict the ratio of \(\sigma (\Lambda \bar p\pi ^ + \pi ^ - )/\sigma (\Lambda \bar p\pi ^ + \pi ^ + )\) to be ?3.1 for centrally produced events and that the width of \(U^ - (\Lambda \bar p\pi ^ + \pi ^ - )\) to be greater than that of \(U^ + (\Lambda \bar p\pi ^ + \pi ^ + )\) . Both predictions seem to be in reasonable accord with the available data. We call for the detection of the \(\Lambda \bar p\pi ^ - \pi ^ - \) mode to verify the present interpretation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号