首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
动态探针测试系统的开发和应用   总被引:2,自引:0,他引:2  
1前言叶轮机械中的动态探针测试是将带有压力传感器的探针固定在静止部件上,测试值随时间的变化与叶轮沿圆周方向的运动相对应,可在短时间内在1个测试位置上测出叶片间的流动状态。虽然其使用仅局限在叶轮的外部,但国际上已有较多的应用[1]。而国内这方面的详细介绍和在叶轮机械研究中的应用报告极少见到。本文建立了有自己特色的动态探针结构、校正、响应度检验和测试系统,并在国际上首次应用到离心泵进口回流的研究和诱导轮泵交替叶片空泡引起扬程下降机理的研究中,取得了很好的效果。2动态探针的结构和校正方法目前国际上使用…  相似文献   

2.
基于CFD方法,采用混合两相模型、标准κ-ε方程和sighal发展的全空化模型,对具有特殊结构形式的侧壁式压水室离心泵空化特征进行数值计算。预测了泵在未发生空化和空化条件下的能量性能,并且分析了设计流量下叶片表面和流道内的空泡分布情况。结果表明:在大流量工况下,泵的必需汽蚀余量大,容易产生空化现象。随着泵进口压力的降低,空泡最先出现在泵叶片背面靠近进口边附近;当进口压力进一步降低时,空泡区域开始快速增加,向叶片出口延伸,泵的扬程开始大幅下降。进口压力继续降低时,叶片工作面开始出现空泡,叶轮周向流道内开始充满空泡,此时泵的扬程急剧下降,泵的稳定运行工况被破坏。不同汽蚀余量下,叶频处压力幅值变化明显,在临界汽蚀点处几乎达到极小值。  相似文献   

3.
分析了超低比转速高速诱导轮高心泵容易产生不稳定特性的原因和机理,并提出了控制措施,试验表明采用合理设计复合叶轮等过流部件以及在诱导轮和离心轮前加孔板能够使高速泵获得稳定的扬程流量特性线.  相似文献   

4.
基于光纤耦合反射式光束偏转法,提出了一种可用于瞬态力学量测试的光学传感器,并详细给出了该测试机理.采用该传感器,在靶材对心处实时检测到由于空泡在固体靶材附近溃灭时射流冲击力引起的靶材瞬态微小变形.通过对该传感器定标可以进一步得到作用冲击力大小.这种传感器的应用将有助于了解激光诱导产生空泡射流运动特性及其对靶材的损伤机制.  相似文献   

5.
赵瑞  徐荣青  沈中华  陆建  倪晓武 《物理学报》2006,55(9):4783-4788
通过自行研制的光偏转测试系统对黏性液体中激光空泡脉动特性进行了实验,获得了激光等离子体空泡前两次脉动全过程,从而判定了空泡在脉动过程中对应的最大和最小泡半径;并将不同黏性系数下空泡脉动结果与基于空泡溃灭理论的计算结果进行了对比.结果表明:液体黏性对空泡生存周期、空泡半径,以及泡壁的运动速度等均有影响.受液体黏性影响,空泡膨胀或收缩过程明显变缓,其相应的生存周期也越长.这一研究结果不仅可促进空化研究的深入,也可为合理利用空化现象提供参考. 关键词: 激光泡 脉动特性 黏性 光纤传感器  相似文献   

6.
本文通过SSTk-ω湍流模型和ZGB空化模型对某种涡轮泵进行了空化流场计算,得到了其水力性能曲线和空化性能曲线,对设计工况下涡轮泵内部流场和压力脉动特性进行了分析。结果表明,涡轮泵易在三个位置发生空化,诱导轮前后的压力脉动主要由诱导轮叶片通过频率决定,蜗壳内部压力脉动受动静干涉影响较大。  相似文献   

7.
为明确前置各种参数的孔板对抑制GSB-80/300型的诱导轮离心泵小流量不稳定特性的影响程度,选择孔板离诱导轮前缘的距离L,孔板的孔径D,孔板的厚度B作为3因素,每个因素各取3水平,制定了L9(3~3)正交数值模拟试验方案。数值模拟试验方案采用雷诺时均N-S控制方程和标准κ-ε湍流模型。通过数值模拟,得到了前置各种参数的孔板下诱导轮离心泵流场的分布情况,得到了较佳的三种参数组合,并揭示了各个因素对流场的影响顺序是:孔板的孔径D,孔板的厚度B,孔板离诱导轮前缘的距离L。在此基础上,对三种较佳参数组合下的孔板进行了全工况点的数值模拟,分别得到了它们的扬程流量特性曲线。通过流场,外特性曲线分析比较,得到了有效抑制GSB-80/300型的诱导轮离心泵小流量不稳定特性的最佳参数组合的孔板。  相似文献   

8.
人们在启动和关闭电风扇时,如果观察电风扇的叶片转动,往往会看到叶片有向相反方向转动的现象,即有一个“正转一反转一正转”过程的现象,这是什么原因呢?  相似文献   

9.
压气机的叶片宛如一个机翼,当沿展向的环量分布不均匀时,会有尾涡出现,引起展向环量分布不均匀的原因是多方面的。在亚音速转子中,可能的原因如下:1)原设计的展向环量分布不均匀;2)叶片在非设计工况下工作;3)环壁边界层存在和根部叶片的大折转角诱发的根部叶片通道二次流也能改变此段叶片截面上的环量分布,而叶片的有限展长在顶端截面上也会诱导附加环量,等等。尾涡的存在会产生诱导攻角和改变出气角,最终导致环量沿展向重新分布。文献[1]提出了描述尾涡影响的扰动势场方程。在无粘和稳定条件下,方程可写成  相似文献   

10.
水下超声速气体射流诱导尾空泡实验研究   总被引:4,自引:0,他引:4       下载免费PDF全文
许昊  王聪  陆宏志  黄文虎 《物理学报》2018,67(1):14703-014703
两相射流与空化问题对采用喷气推进的水下高速运载器而言不可避免.本文通过水洞实验,探究了回转体在水流场中由亚声速及超声速气体射流诱导形成尾空泡的形态特征,发现了四种不同类型的诱导尾空泡,并探讨了相应的形成机理和控制条件.通过高速图像采集及数字处理技术,得到了不同弗劳德数和通气流量系数下诱导尾空泡的瞬时及时间平均形态.通过气体射流数值解及射流耦合空泡闭合理论模型与实验图像的对比分析,得到如下结论:根据形态特征,将观察到的射流诱导尾空泡划分为泡沫状、完整、部分破碎和脉动泡沫状四类,其中诱导产生的部分破碎尾空泡在形态上与超空泡存在明显差异,脉动泡沫状则为诱导空泡所特有;气体射流受到空泡阻挡发生回射后对应的实际通气流量系数是控制空泡形态的关键;诱导空泡类型转变可以通过Paryshev提出的射流空泡耦合模型预测,但必须在考虑射流空间结构和流动损失的前提下;进行上述修正后,诱导尾空泡形态变化规律与理论模型估算得到的实际流量系数相符合.  相似文献   

11.
为控制轴流泵空化的发生与发展,提出了一种在轴流泵叶片背面布置不连续凸起结构的方案.基于ANSYSCFX软件,对350ZQ-125-30型潜水轴流泵进行数值模拟,对比分析改进模型与原模型流道内压力、湍动能、空泡及流线分布的变化.结果表明,改进后叶片背面低压区域减小,工作面高压区域明显增大,临界空化余量降低;在空化的各个阶...  相似文献   

12.
阐述了采用空化黏流CFD瞬态模拟和脉冲球形气泡辐射噪声理论相结合的思路在螺旋桨空化低频噪声谱预报上的应用方法。预报了全附体SUBOFF潜艇标称伴流条件下的NSRDC4383五叶大侧斜桨和某七叶大侧斜桨的片空化低频噪声谱,分析了桨叶负载和空化程度对线谱成分及其谱源级的影响。空化模拟时采用作者提出的且可信性经过验证的改进Sauer空化模型和修正SST湍流模型。噪声谱预报时空化体积由空化特征长度求取,较空泡表面球形等价假设更加合理。计算表明,七叶桨较五叶桨的确具有负载小、空化初生延迟、空化低频线谱噪声低的特征。在相同的基于航速的空化数下,非均匀进流与桨叶相互作用会明显增加线谱成分及其谱源级。在伴流、空化数和转速一定时,随着负载减小,推力、力矩和桨叶空化面积均会减小,但空化体积加速度幅度却变大,离散线谱噪声级增加且由奇次谐频为主转变为以偶次谐频为主;当仅减小空化程度时,谐频线谱成分明显被抑制,且1 kHz频率处谱源级减小2.54 dB。较完整地构建了螺旋桨空化水动力和噪声性能评估的数值平台,可用于指导艇尾低噪声桨的数值设计。  相似文献   

13.
轴流式水力机械转轮中局限空化流动的面元奇点解法   总被引:2,自引:0,他引:2  
轴流式水力机械转轮中局限空化流动的面元奇点解法刘四清,常近时(北京农业工程大学水利与建筑工程系北京100083)关键词:空化,水力机械,转轮。SOLUTIONTOPARTIALCAVITATIONFLOWINIMPELLEROFAXIAL-FLOWH...  相似文献   

14.
本文通过求解SST湍流模型以及三维Unsteady Reynolds-Averaged Navier-Stokes (URANS)方程,研究了单级轴流透平轮缘密封整周模型的流动与封严特性。分析了不同冷气流量下的封严效率与压力波动的变化,并通过与仅保留静叶和仅保留动叶的简化模型比较,分析了动静叶对主流与盘腔内压力波动的影响。结果表明:盘腔内部封严效率存在周向波动但无明显周期性规律,主流与盘腔内的压力周向波动受动静叶的影响,存在明显的周期性规律,静叶下游压力波动周期数等于静叶数,动叶上游与盘腔内部压力波动周期数等于动叶数。  相似文献   

15.
不同冲角下弯曲扩压叶栅出口流场的实验研究   总被引:4,自引:0,他引:4  
本文在不同冲角下对直叶片、正倾斜叶片、正弯曲叶片和S型叶片组成的四种平面扩压时栅的出口流场进行了详细的实验研究。通过与常规直叶栅的对比,分析了正倾斜叶栅降低根区二次流损失的原因,阐述了正弯曲叶栅在正冲角下改善叶栅两端区流动状况,降低能量损失的机理和S型叶栅降低根区损失、总损失系数对冲角变化不敏感的原因。结果表明,扩压叶栅中采用正弯曲叶片在一定条件下是可行的。  相似文献   

16.
空化流动诱导离心泵低频振动的实验研究   总被引:2,自引:0,他引:2  
空化流动严重影响泵安全稳定运行,为充分认识泵内空化发展程度及其诱导的低频振动特性,设计了一台离心式模型泵作为研究对象,同时采用高速摄影及振动加速度测试手段,实现了叶轮内部空化流动的可视化及对应的泵体低频振动信号提取,分析了空化泡形态随空化发展的演化规律,对比了空化发生前后泵体低频振动频谱特性,探讨了泵体总振级水平、离散频率下振动加速度幅值随空化发展程度的变化,提出振动临界汽蚀余量可作为空化程度的另一判据,叶频时的振动加速度幅值变化亦可作为泵内空化程度的表征。  相似文献   

17.
针对侧斜螺旋桨船舶建立了一种螺旋桨空化噪声调制谱理论模型。将螺旋桨旋转过程中崩溃的空泡体积的周期性变化近似为空化噪声能量的变化,根据船尾伴流速度与空泡噪声体积成比例以及螺旋桨转速与空泡数量成比例的关系,推导出了空化噪声调制谱数学表达式。理论分析和仿真验证了桨叶之间的差异性是调制谱轴频线谱存在的主要原因,而影响调制谱叶频强度的主要因素为螺旋桨侧斜角度以及转速。研究结论为辐射噪声调制谱特征分析与提取提供了理论依据,同时对螺旋桨结构设计和船舶降噪也具有一定的参考价值。  相似文献   

18.
The effect of a near root local blade crack on the stability of a grouped blade disk is investigated in this paper. A bladed disk comprised of periodically shrouded blades is used to simulate the coupled periodic structure. The blade crack is modeled using the local flexibility with coupling terms. The mode localization phenomenon introduced by the blade crack on the longitudinal and bending vibrations in the rotating blades has also been considered. Using the Galerkin's method, the imperturbation equations of a bladed disk in which one of the blades is cracked, subject to fluctuations in the rotation speed, can be derived. Employing the multiple scales method, the boundaries of the instability zones in the mistuned turbo blade system are approximated. Numerical results indicate that an additional unstable zone is introduced near the localization frequency and the regions of unstable zones are varied with the crack size and fluctuations in disk speed.  相似文献   

19.
随着风力机大型化发展,叶片尾缘襟翼控制技术,作为叶片流场主动控制的一种有效手段,能够有效、快速、灵活地降低叶片载荷,提高风力机,特别是大型风力机的可靠性、经济性,该技术受到国内外的广泛关注.为深入了解叶片襟翼实际作用效果及降载机制,在大量数值仿真计算工作基础上,需进一步开展带有襟翼控制的模型风力机风洞实验工作.本文在相...  相似文献   

20.
早在六十年代初期,Smith提出了弦向倾斜叶片 ̄[1]。叶片的这种倾斜集叶片的后掠(叶片展向与气流不垂直)和上反(叶片表面与端壁斜交)于一身。根据理论分析可知,弦向倾斜叶片与周向倾斜叶片比较,在相同倾斜角下,它更能有效地抑制通道涡的形成和发展 ̄[2]。但是,到现在为止还没有实验数据证实这一计算结果。本文继文献 ̄[3]详细测量了弦向倾斜叶片叶栅由栅前至栅后诸截面上的气动参数。实验结果表明,弦向倾斜对损失的发展起到了与周向倾斜相类似的作用,但是前者比后者减小了叶栅进口段的流向逆压梯度,从而降低了二次旋涡损失。本文还测量了大转角常规直叶栅与反弯叶片叶栅端壁与叶片表面上的静压分布,探讨了反弯叶片降低损失的原因,认为:减小叶栅进口段流向逆压梯度,在叶片吸力面前部形成垂直于端壁的平行静压等值线、在中部形成反“C”型静压等值线,以及在流道内建立沿叶高的反“C”型静压分布,是反弯叶片降低损失的三要素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号