首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The problem of heat transfer in a turbulent asymptotic boundary layer with suction is solved in the framework of the monoharmonic model. The flow is one dimensional on the average, which is why it is chosen for investigation. The theoretically determined mean and pulsation characteristics of the flow, in particular the turbulent Prandtl number, agree with the experimental results for a boundary layer.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 74–79, January–February, 1981.  相似文献   

2.
An application of bi-orthogonal decomposition to an experiment on the transition of the boundary layer over a rotating disk is performed and compared with linear, wavelet and Fourier analyses. We show how this bi-orthogonal decomposition can detect the results of these three methods, the critical Reynolds number (R c = 268) and the first transition Reynolds number (R t=445), and a new Reynolds number (R = 365) where the entropy fluctuates significantly, before nonlinear effects appear.  相似文献   

3.
The formation of a laminar boundary layer over a water surface has been experimentally studied for the case of a low wind speed of 3.77 m/s without pressure gradient. Velocity profiles were measured using a small total head tube with an external diameter D=0.7 mm in order to detect the velocity as close to the air/water interface as possible. Precision data were obtained by close attention being paid to near boundary correction procedures arising from the effects of viscous, velocity gradient and wall proximity on the pressure tube. Measurements for the first time support Lock's theory.  相似文献   

4.
The results of an experimental and numerical investigation of flow and heat transfer in the region of the interaction between an incident oblique shock and turbulent boundary layers on sharp and blunt plates are presented for the Mach numbers M = 5 and 6 and the Reynolds numbers ReL = 27×106 and 14×106. The plate bluntness and the incident shock position were varied. It is shown that the maximum Stanton number St m in the shock incidence zone decreases with increase in the plate bluntness radius r to a certain value and then varies only slightly with further increase in r. In the case of a turbulent undisturbed boundary layer heat transfer is diminished with increase in r more slowly than in the case of a laminar undisturbed flow. In the presence of an incident shock the bluntness of the leading edge of the flat plate results in a greater decrease in the Stanton number than in the absence of the shock. With increase in the bluntness of the leading edge of the plate the separation zone first sharply lengthens and then decreases in size or remains constant.  相似文献   

5.
 A laser-induced fluorescence (LIF) technique is described to measure vertical concentration profiles of gases in the aqueous mass boundary layer at a free water surface. The technique uses an acid-base reaction of the fluorescence indicator fluorescein at the water surface to visualize the concentration profiles. The technique is capable of measuring two-dimensional vertical concentration profiles at a rate of 200 frames/s and a spatial resolution of 16 μm. The mass boundary layer at a free surface is characterized by significant fluctuations. Direct surface renewal is observed. The mean profiles also support rather surface renewal models than turbulent diffusion models. Received: 21 May 1997/Accepted: 18 December 1997  相似文献   

6.
The inner part of a neutral atmospheric boundary layer has been simulated in a wind tunnel, using air injection through the wind tunnel floor to thicken the boundary layer. The flow over both a rural area and an urban area has been simulated by adapting the roughness of the wind tunnel floor. Due to the thickening of the boundary layer the scaling factor of atmospheric boundary layer simulation with air injection is considerably smaller than that without air injection. This reduction of the scaling factor is very important for the simulation of atmospheric dispersion problems in a wind tunnel.The time-mean velocity distribution, turbulence intensity, Reynolds stress and turbulence spectra have been measured in the inner part of the wind tunnel boundary layer. The results are in rather good agreement with atmospheric measurements.Nomenclature d Zero plane displacement, m - h Height of roughness elements, m - k Von Kármán's constant - n Frequency of turbulence velocity component, s–1 - S u(n) Energy spectrum for longitudinal turbulence velocity component, m2 s–1 - S v(n) Energy spectrum for lateral turbulence velocity component, m2 s–1 - S w(n) Energy spectrum for vertical turbulence velocity component, m2 s–1 - U o Free stream velocity outside the boundary layer, m s–1 - Time-mean velocity inside the boundary layer, m s–1 - u* Wall-friction velocity, m s–1 - u Longitudinal turbulence intensity, m s–1 - v Lateral turbulence intensity, m s–1 - w Vertical turbulence intensity, m s–1 - Reynolds stress, m2 s–2 - z Height above earth's surface or wind tunnel floor, m - z o Roughness length, m - Thickness of inner part of boundary layer, m - Thickness of boundary layer, m - Kinematic viscosity, m2 s–1  相似文献   

7.
8.
9.
Using a cylindrical shell under axial loading as an example, we discuss the possibility of applying the membrane theory together with the boundary layer correction to analyze the large deflection plastic buckling problem. In the cases of fixed ends and simply-supported ends, the conditions to be satisfied for using the boundary layer method (also called the composite-expansion method) are given and discussed.  相似文献   

10.
We have studied the motion of bubbles and particles in the near-wall region of a turbulent boundary layer, to investigate the influence of the unsteady turbulent structure. The velocity field was computed using Proper Orthogonal Decomposition (POD), and the trajectories of bubbles and particle have been computed by integrating their equation of motion. We have used this to investigate the roles, and the relative importance, of the different forces acting on bubbles and particles, We find that the unsteady turbulent structure plays an important role in the preferential accumulation of bubbles and particles. The accumulation of bubbles depends on a rather complicated interaction between the pressure gradient and the lift force; neither is sufficient, acting on its own, to explain the strong accumulation observed when they act together.  相似文献   

11.
Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 6–12, May–June, 1989.  相似文献   

12.
The boundary region of a turbulent boundary layer contributes greatly to the drag. Intense turbulence is generated in this region. Below we investigate the interaction of an elastic boundary with a viscous sublayer for a decrease in the Reynolds stresses, and for a corresponding decrease in the drag. It does not seem possible to investigate the general case. Therefore, the problem is solved within the framework of the limitations made by Sternberg [1] for the theory of a viscous sublayer in a turbulent flow near a solid smooth wall.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 58–62, May–June, 1971.The authors thanks G. S. Migirenko for advice and remarks given during a discussion of the work.  相似文献   

13.
Gas flow and heat transfer on the surfaces of sharp and blunt plates is experimentally investigated in the presence of two forward-looking wedges at the Mach numbers M = 5, 6, and 8 and the Reynolds numbers up to ReL = 27×106. It is shown that the entropy layer generated by a small bluntness of the leading edge of the plate can considerably change the heat transfer, the gas pressure, and the friction in the zone of interference of the shock with the plate boundary layer. Under certain conditions a small plate bluntness can also lead to a qualitative change in the flow structure. The effect of constriction of the channel between the wedges on the interference flow is studied.  相似文献   

14.
The effect of upstream injection by means of continuous air jet vortex generators (AJVGs) on a shock wave turbulent boundary layer interaction is experimentally investigated. The baseline interaction is of the impinging type, with a flow deflection angle of 9.5° and a Mach number M e  = 2.3. Considered are the effects of the AJVGs on the upstream boundary layer flow topology and on the spatial and dynamical characteristics of the interaction. To this aim, Stereoscopic Particle Image Velocimetry has been employed, in addition to hot-wire anemometry (HWA) for the investigation of the unsteady characteristics of the reflected shock. The AJVGs cause a reduction of the separation bubble length and height. In addition, the energetic frequency range of the reflected shock is increased by approximately 50%, which is in qualitative agreement with the smaller separation bubble size.  相似文献   

15.
A separation criterion, i.e., a definite relationship between the external flow and the boundary layer parameters [1], can be used to estimate the possibility of the origination of separation of a two-dimensional boundary layer. A functional form of the separation criterion has also been obtained for a three-dimensional boundary layer [2] on the basis of dimensional analysis. As in the case of the two-dimensional boundary layer, locally self-similar solutions can be used to determine the specific magnitude of the separation criterion as a function of the values of the governing parameters. Locally self-similar solutions of the two-dimensional laminar boundary-layer equations have been found at the separation point for a perfect gas with a linear dependence of the coefficient of viscosity on the temperature (Ω=1) and Prandtl number P=1 [3, 4]. The influence of blowing and suction has been studied for this case [5]. Self-similar solutions have been obtained for Ω=1, P=0.723 for the limit case of hypersonic perfect gas flow [6]. Locally self-similar solutions of the three-dimensional laminar boundary-layer equations at the separation point are presented in [7] for a perfect gas with Ω=1, P=1. There are no such computations for Ω≠1, P≠1; however, the results of computing several examples for a two-dimensional flow [8] show that the influence of the real properties of a gas can be significant and should be taken into account. Self-similar solutions of the two- and three-dimensional boundary-layer equations at the separation point are found in this paper for a perfect gas with a power-law dependence of the viscosity coefficient on the enthalpy (Ω=0.5, 0.75, 1.0) for different values of the Prandtl number (P=0.5, 0.7, 1.0) in a broad range of variation of the external stream velocity (v 1 2 /2h1* = 0–0.99) and the temperature of the streamlined surface. Magnitudes of the separation criterion for a laminar boundary layer have been obtained on the basis of these data.  相似文献   

16.
17.
Experiments have demonstrated [1] that the transition of streamline-type flow into turbulent flow in a boundary layer occurs as a result of the formation and development of turbulent spots apparently arising from small natural disturbances. A study of the nonlinear evolution and interaction of localized disturbances requires knowledge of their characteristics to a linear approximation [2]. In the current work, results are presented of calculations of such characteristics for the first two unstable modes in a supersonic boundary layer on a two-dimensional plate (M = 4.5, Tw = 4.44).Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 1, pp. 50–53, January–February, 1976.  相似文献   

18.
19.
A special variant is considered of the theory of longitudinal—transverse interaction in which the pressure field in the perturbed region of flow forms under the influence of centrifugal forces which lead to a change in the pressure across the boundary layer. This regime of flow is realized in flow of an incompressible fluid, when the two-dimensional boundary layer developing along the smooth section of the contour of a solid body enters into interaction with a three-dimensional irregularity on the surface around which flow is taking place, a projection or a depression. On the assumption that the height of the irregularity is not great, a solution is constructed for the linearized problem of interaction. It is shown that the properties of the flow of fluid in the region of interaction, in particular the possibility of penetration of perturbations into the boundary layer in front of an irregularity, depend on the sign of the curvature exhibited by the contour of the body.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 39–48, January–February, 1988.  相似文献   

20.
An oscillating vortex embedded within a turbulent boundary layer was generated experimentally by forcing a periodic lateral translation of a half-delta wing vortex generator. The objective of the experiment was to investigate the possibility that a natural oscillation, or meander, might be responsible for flattened vortex cores observed in previous work, which could also have contaminated previous turbulence measurements. The effect of this forced oscillation was characterized by comparison of measurements of the mean velocities and Reynolds stresses at two streamwise stations, for cases with and without forcing. The Reynolds stresses, especially w, were affected significantly by the forced oscillation, mainly through contributions from the individual production terms, provided the vortex was not too diffuse.List of Symbols a amplitude of forced vortex motion - f frequency of forced vortex generator motion - l vortex generator root chord - L flow length scale - R Y , R Z vortex core radial dimensions in vertical and spanwise directions, respectively - Rr vortex circulation Reynolds number R = / - u, v, w instantaneous velocity components in X, Y, Z directions - U, V, W mean velocities; shorthand notation for u, , w - X, Y, Z right-hand Cartesian streamwise, vertical, and spanwise coordinate directions - boundary-layer thickness - overall circulation - air kinematic viscosity - x streamwise vorticity, X = W/Y–V/d+t6Z - ( )0 reference value (measured at X = 10 cm) - ( )c refers to vortex center - ( ) max maximum value for a particular crossflow plane - ( ) (overbar) time average - ( ) (prime) fluctuating component, e.g., u=U+u  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号