首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A model for the evolution of the wealth distribution in an economically interacting population is introduced, in which a specified amount of assets are exchanged between two individuals when they interact. The resulting wealth distributions are determined for a variety of exchange rules. For “random” exchange, either individual is equally likely to gain in a trade, while “greedy” exchange, the richer individual gains. When the amount of asset traded is fixed, random exchange leads to a Gaussian wealth distribution, while greedy exchange gives a Fermi-like scaled wealth distribution in the long-time limit. Multiplicative processes are also investigated, where the amount of asset exchanged is a finite fraction of the wealth of one of the traders. For random multiplicative exchange, a steady state occurs, while in greedy multiplicative exchange a continuously evolving power law wealth distribution arises. Received: 13 August 1997 / Revised: 31 December 1997 / Accepted: 26 January 1998  相似文献   

2.
Pareto law, which states that wealth distribution in societies has a power-law tail, has been the subject of intensive investigations in the statistical physics community. Several models have been employed to explain this behavior. However, most of the agent based models assume the conservation of number of agents and wealth. Both these assumptions are unrealistic. In this paper, we study the limiting wealth distribution when one or both of these assumptions are not valid. Given the universality of the law, we have tried to study the wealth distribution from the asset exchange models point of view. We consider models in which (a) new agents enter the market at a constant rate (b) richer agents fragment with higher probability introducing newer agents in the system (c) both fragmentation and entry of new agents is taking place. While models (a) and (c) do not conserve total wealth or number of agents, model (b) conserves total wealth. All these models lead to a power-law tail in the wealth distribution pointing to the possibility that more generalized asset exchange models could help us to explain the emergence of a power-law tail in wealth distribution.  相似文献   

3.
《Physica A》2005,356(1):107-113
We study the effect of the social stratification on the wealth distribution on a system of interacting economic agents that are constrained to interact only within their own economic class. The economical mobility of the agents is related to its success in exchange transactions. Different wealth distributions are obtained as a function of the width of the economic class. We find a range of widths in which the society is divided in two classes separated by a deep gap that prevents further exchange between poor and rich agents. As a consequence, the middle wealth class is eliminated. The high values of the Gini indices obtained in these cases indicate a highly unequal society. On the other hand, lower and higher widths induce lower Gini indices and a fairer wealth distribution.  相似文献   

4.
Random Asset Exchange (RAE) models, despite a number of simplifying assumptions, serve the purpose of establishing direct relationships between microscopic exchange mechanisms and observed economical data. In this work a conservative multiplicative RAE model is discussed in which, at each timestep, two agents “bet” for a fraction f of the poorest agent's wealth. When the poorest agent wins the bet with probability p, we show that, in a well defined region of the (p,f) phase space, there is wealth condensation. This means that all wealth ends up owned by only one agent, in the long run. We derive the condensation conditions analytically by two different procedures, and find results in accordance with previous numerical estimates. In the non-condensed phase, the equilibrium wealth distribution is a power law for small wealths. The associated exponent is derived analytically and it is found that it tends to -1 on the condensation interface. I turns out that wealth condensation happens also for values of p much larger than 0.5, that is under microscopic exchange rules that, apparently, favor the poor. We argue that the observed “rich get richer” effect is enhanced by the multiplicative character of the dynamics.  相似文献   

5.
M. Ali Saif 《Physica A》2007,384(2):448-456
We investigate the problem of wealth distribution from the viewpoint of asset exchange. Robust nature of Pareto's law across economies, ideologies and nations suggests that this could be an outcome of trading strategies. However, the simple asset exchange models fail to reproduce this feature. A Yardsale (YS) model in which amount put on the bet is a fraction of minimum of the two players leads to condensation of wealth in hands of some agent while theft and fraud (TF) model in which the amount to be exchanged is a fraction of loser's wealth leads to an exponential distribution of wealth. We show that if we allow few agents to follow a different model than others, i.e., there are some agents following TF model while rest follow YS model, it leads to distribution with power-law tails. Similar effect is observed when one carries out transactions for a fraction of one's wealth using TF model and for the rest YS model is used. We also observe a power-law tail in wealth distribution if we allow the agents to follow either of the models with some probability.  相似文献   

6.
We discuss the equivalence between kinetic wealth-exchange models, in which agents exchange wealth during trades, and mechanical models of particles, exchanging energy during collisions. The universality of the underlying dynamics is shown both through a variational approach based on the minimization of the Boltzmann entropy and a microscopic analysis of the collision dynamics of molecules in a gas. In various relevant cases, the equilibrium distribution is well-approximated by a gamma-distribution with suitably defined temperature and number of dimensions. This in turn allows one to quantify the inequalities observed in the wealth distributions and suggests that their origin should be traced back to very general underlying mechanisms, for instance, the fact that smaller the fraction of the relevant quantity (e.g. wealth) that agent can exchange during an interaction, the closer the corresponding equilibrium distribution is to a fair distribution.  相似文献   

7.
We study the flow of money among agents in a Barabasi-Albert (BA) scale free network, where each network node represents an agent and money exchange interactions are established through links. The system allows money trade between two agents at a time, betting a fraction f of the poorer’s agent wealth. We also allow for the bet to be biased, giving the poorer agent a winning probability p. In the no network case there is a phase transition involving a relationship between p and f. In the networked case, we also found a condensation interface, however, this is not a complete condensation due to the presence of clusters in the network and its topology. As can be expected, the winner is always a well-connected agent, but we also found that the mean wealth decreases with the agents’ connectivity.  相似文献   

8.
《Comptes Rendus Physique》2019,20(4):349-363
We study an agent-based model of evolution of wealth distribution in a macroeconomic system. The evolution is driven by multiplicative stochastic fluctuations governed by the law of proportionate growth and interactions between agents. We are mainly interested in interactions increasing wealth inequality, that is, in a local implementation of the accumulated advantage principle. Such interactions destabilise the system. They are confronted in the model with a global regulatory mechanism that reduces wealth inequality. There are different scenarios emerging as a net effect of these two competing mechanisms. When the effect of the global regulation (economic interventionism) is too weak, the system is unstable and it never reaches equilibrium. When the effect is sufficiently strong, the system evolves towards a limiting stationary distribution with a Pareto tail. In between there is a critical phase. In this phase, the system may evolve towards a steady state with a multimodal wealth distribution. The corresponding cumulative density function has a characteristic stairway pattern that reflects the effect of economic stratification. The stairs represent wealth levels of economic classes separated by wealth gaps. As we show, the pattern is typical for macroeconomic systems with a limited economic freedom. One can find such a multimodal pattern in empirical data, for instance, in the highest percentile of wealth distribution for the population in urban areas of China.  相似文献   

9.
Wen-Bo Du  Xian-Bin Cao  Mao-Bin Hu 《Physica A》2009,388(24):5005-5012
In social and biological systems, there are obvious individual divergence and asymmetric payoff phenomenon due to the strength, power and influence differences. In this paper, we introduce an asymmetric payoff mechanism to evolutionary Prisoner’s Dilemma Game (PDG) on scale-free networks. The co-effects of individual diversity and asymmetric payoff mechanism on the evolution of cooperation and the wealth distribution under different updating rules are investigated. Numerical results show that the cooperation is highly promoted when the hub nodes are favored in the payoff matrix, which seems to harm the interest of the majority. But the inequality of social wealth distribution grows with the unbalanced payoff rule. However, when the node difference is eliminated in the learning strategy, the asymmetric payoff rule will not affect the cooperation level. Our work may sharpen the understanding of the cooperative behavior and wealth inequality in the society.  相似文献   

10.
We investigate how wealth transfer that happens at the end of an agent’s life affects its final distribution based on a multi-agent dynamic model. We discuss two kinds of wealth transfers: to a single agent and to charities. The first kind of bequest is common in our realistic world and is always regarded by the public as unequal inheritance. The bequests to charities will be gathered and then equally redistributed among the survivors in our model. We find that when all the decedents choose the second kind of bequest, the final distribution is the Gibbs exponential function. When all the decedents choose the first kind of bequest, the result is condensation that a single individual accumulates all the available wealth. When an increasing portion of decedents choose the one-heir bequests, the exponential distribution evolves towards a power law shape (accompanied by deteriorating inequality). This shape firstly appears from the intermediate range of wealth and extends towards the top end of the simulated distribution, while the distribution remains exponential for high values of the wealth. At the same time, the Gini coefficient increases and the wealth accumulation becomes serious. At last, we analyze the source of the inequality. We find that not only unequal inheritances, but also equal division of the charity’s wealth can relatively contribute to an inequality of wealth distribution.  相似文献   

11.
We study here numerically the behavior of an ideal gas like model of markets having only one non-consumable commodity. We investigate the behavior of the steady-state distributions of money, commodity and total wealth, as the dynamics of trading or exchange of money and commodity proceeds, with local (in time) fluctuations in the price of the commodity. These distributions are studied in markets with agents having uniform and random saving factors. The self-organizing features in money distribution are similar to the cases without any commodity (or with consumable commodities), while the commodity distribution shows an exponential decay. The wealth distribution shows interesting behavior: gamma like distribution for uniform saving propensity and has the same power-law tail, as that of the money distribution, for a market with agents having random saving propensity.  相似文献   

12.
A deterministic system of interacting agents is considered as a model for economic dynamics. The dynamics of the system is described by a coupled map lattice with nearest neighbor interactions. The evolution of each agent results from the competition between two factors: the agent’s own tendency to grow and the environmental influence that moderates this growth. Depending on the values of the parameters that control these factors, the system can display Pareto or Boltzmann-Gibbs statistical behaviors in its asymptotic dynamical regime. The regions where these behaviors appear are calculated on the space of parameters of the system. Other statistical properties, such as the mean wealth, the standard deviation, and the Gini coefficient characterizing the degree of equity in the wealth distribution are also calculated.  相似文献   

13.
14.
杜文博  曹先彬  杨涵新  胡茂彬 《中国物理 B》2010,19(1):10204-010204
In this paper, we introduce an asymmetric payoff distribution mechanism into the evolutionary prisoner's dilemma game (PDG) on Newman--Watts social networks, and study its effects on the evolution of cooperation. The asymmetric payoff distribution mechanism can be adjusted by the parameter α: if α>0, the rich will exploit the poor to get richer; if α<0, the rich are forced to offer part of their income to the poor. Numerical results show that the cooperator frequency monotonously increases with α and is remarkably promoted when α>0. The effects of updating order and self-interaction are also investigated. The co-action of random updating and self-interaction can induce the highest cooperation level. Moreover, we employ the Gini coefficient to investigate the effect of asymmetric payoff distribution on the the system's wealth distribution. This work may be helpful for understanding cooperative behaviour and wealth inequality in society.  相似文献   

15.
Linrong Dong 《Physica A》2008,387(23):5868-5873
We propose a self-adapting herding model, in which the financial markets consist of agent clusters with different sizes and market desires. The ratio of successful exchange and merger depends on the volatility of the market and the market desires of the agent clusters. The desires are assigned in term of the wealth of the agent clusters when they merge. After an exchange, the beneficial cluster’s desire keeps on the same, the losing one’s desire is altered which is correlative with the agent judge-ability. A parameter R is given to all agents to denote the judge-ability. The numerical calculation shows that the dynamic behaviors of the market are influenced distinctly by R, which includes the exponential magnitudes of the probability distribution of sizes of the agent clusters and the volatility autocorrelation of the returns, the intensity and frequency of the volatility.  相似文献   

16.
Gyemin Lee  Gwang Il Kim 《Physica A》2007,383(2):677-686
A network induced by wealth is a social network model in which wealth induces individuals to participate as nodes, and every node in the network produces and accumulates wealth utilizing its links. More specifically, at every time step a new node is added to the network, and a link is created between one of the existing nodes and the new node. Innate wealth-producing ability is randomly assigned to every new node, and the node to be connected to the new node is chosen randomly, with odds proportional to the accumulated wealth of each existing node. Analyzing this network using the mean value and continuous flow approaches, we derive a relation between the conditional expectations of the degree and the accumulated wealth of each node. From this relation, we show that the degree distribution of the network induced by wealth is scale-free. We also show that the wealth distribution has a power-law tail and satisfies the 80/20 rule. We also show that, over the whole range, the cumulative wealth distribution exhibits the same topological characteristics as the wealth distributions of several networks based on the Bouchaud-Mèzard model, even though the mechanism for producing wealth is quite different in our model. Further, we show that the cumulative wealth distribution for the poor and middle class seems likely to follow by a log-normal distribution, while for the richest, the cumulative wealth distribution has a power-law behavior.  相似文献   

17.
In kinetic exchange models, agents make transactions based on well-established microscopic rules that give rise to macroscopic variables in analogy to statistical physics. These models have been applied to study processes such as income and wealth distribution, economic inequality sources, economic growth, etc., recovering well-known concepts in the economic literature. In this work, we apply ensemble formalism to a geometric agents model to study the effect of saving propensity in a system with money, credit, and debt. We calculate the partition function to obtain the total money of the system, with which we give an interpretation of the economic temperature in terms of the different payment methods available to the agents. We observe an interplay between the fraction of money that agents can save and their maximum debt. The system’s entropy increases as a function of the saved proportion, and increases even more when there is debt.  相似文献   

18.
We propose a simple stochastic exchange game mimicking taxation and redistribution. There are g agents and n coins; taxation is modeled by randomly extracting some coins; then, these coins are redistributed to agents following Polya's scheme. The individual wealth equilibrium distribution for the resulting Markov chain is the multivariate symmetric Polya distribution. In the continuum limit, the wealth distribution converges to a Gamma distribution, whose form factor is just the initial redistribution weight. The relationship between this taxation-and-redistribution scheme and other simple conservative stochastic exchange games (such as the BDY game) is discussed.  相似文献   

19.
Many models of market dynamics make use of the idea of conservative wealth exchanges among economic agents. A few years ago an exchange model using extremal dynamics was developed and a very interesting result was obtained: a self-generated minimum wealth or poverty line. On the other hand, the wealth distribution exhibited an exponential shape as a function of the square of the wealth. These results have been obtained both considering exchanges between nearest neighbors or in a mean field scheme. In the present paper we study the effect of distributing the agents on a complex network. We have considered archetypical complex networks: Erdös–Rényi random networks and scale-free networks. The presence of a poverty line with finite wealth is preserved but spatial correlations are important, particularly between the degree of the node and the wealth. We present a detailed study of the correlations, as well as the changes in the Gini coefficient, that measures the inequality, as a function of the type and average degree of the considered networks.  相似文献   

20.
We conduct a market experiment with human agents in order to explore the structure of transaction networks and to study the dynamics of wealth accumulation. The experiment is carried out on our platform for 97 days with 2,095 effective participants and 16,936 times of transactions. From these data, the hybrid distribution (log-normal bulk and power-law tail) in the wealth is observed and we demonstrate that the transaction networks in our market are always scale-free and disassortative even for those with the size of the order of few hundred. We further discover that the individual wealth is correlated with its degree by a power-law function which allows us to relate the exponent of the transaction network degree distribution to the Pareto index in wealth distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号