首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
低温等离子体转化NO/O2/N2气氛中NO的实验研究   总被引:1,自引:0,他引:1  
王军  蔡忆昔  王攀  庄凤芝  冉冬立 《化学学报》2009,67(20):2315-2318
通过建立低温等离子体实验系统, 研究了介质阻挡放电型低温等离子体反应器作用于NO/O2/N2混合气体系时, NO, O2初始浓度对NO的转化效率的影响以及NOx, O3浓度随能量密度的变化关系. 低温等离子体作用于NO/O2/N2混合气体系时, NO同时发生氧化还原反应, 氧化反应占主导地位, 大部分NO转化为NO2; NO转化率随O2, NO初始浓度增大而降低, 能量密度在450~600 J/L时转化率较高; 产生的O3浓度随能量密度的增大呈先增后减的趋势.  相似文献   

2.
甲烷参与下催化剂填充型介质阻挡放电等离子体脱除NOx   总被引:1,自引:0,他引:1  
 将In/HZSM-5催化剂填充于介质阻挡放电反应器中,考察了甲烷参与下NOx的脱除及其脱除产物. 结果表明,在200~350 ℃间,等离子体与催化剂共同作用时NOx的转化率明显高于等离子体或催化剂单独作用时NOx的转化率. 在0.03%NO-0.05%CH4-2%O2-97.92%N2,空速7200 h-1和300 ℃的条件下,单纯等离子体、单纯催化剂和二者共同作用下NOx的转化率分别为24%,25%和65%. 甲烷参与下等离子体和催化剂共同作用时,在催化剂表面没有硝酸盐或亚硝酸盐生成,仅有少量副产物N2O生成. 由此可以推断,NOx脱除的主要产物为N2. 低于300 ℃时,NOx的脱除以分解途径为主,甲烷的作用主要是抑制放电条件下NOx生成的副反应; 在300~350 ℃间,甲烷作为还原剂被等离子体和催化剂协同活化,NOx的脱除以还原途径为主. 采用催化剂填充型介质阻挡放电反应器,可在非常宽的温度区间实现NOx的脱除.  相似文献   

3.
The effectiveness of applying packed-bed dielectric barrier discharge(PBDBD) technology for removing acetaldehyde from gas streams wasinvestigated. Operating parameters examined in this study include appliedvoltage, oxygen content, and gas-flow rate. Experimental results indicatethat the destruction efficiency of acetaldehyde predominantly depends onthe applied voltage. Removal of 99% of acetaldehyde has been achieved forgas streams containing 1000 ppmv acetaldehyde, 5% oxygen, with nitrogen asthe carrier gas. The oxygen content in the gas stream plays an importantrole in removing acetaldehyde within PBDBD. A higher CH3CHO removalefficiency is achieved for the gas stream containing less oxygen, since itwill dissipate energy due to its electronegative property. Carbon dioxideis the major end product, which is less hazardous to the environment and tohuman health. However, undesirable products, e.g., NO2 and N2O,CH3OC2H5, CH3COOH, CH3NO2,HCN, CH3NO3, and CH3OH, are detected as well.  相似文献   

4.
高频介质阻挡放电烟气脱硫研究   总被引:6,自引:0,他引:6  
赵之骏  吴玉萍  张仁熙  侯惠奇 《化学学报》2004,62(23):2308-2312
采用高频介质阻挡放电的方式产生低温等离子体,研究在不加入NH3的情况下流动态SO2的去除情况.实验表明,在输入电压为12 kV,SO2浓度为5400 mg/m3,气体流量为0.36 m3/h,相对湿度为55%时,脱硫率可达到70%以上;水气的存在对SO2的去除有较大的促进作用,升高电压和增加O2量对脱硫率的促进作用有限.对实验结果进行了解释,并提出了反应机理.  相似文献   

5.
Perfluorocompounds (PFCs) have been extensively used as plasma etching andchemical vapor deposition (CVD) gases for semiconductor manufacturingprocesses. PFCs have significant effects on the global warming and havevery long atmospheric lifetimes. Laboratory-scale experiments were performedto evaluate the effectiveness of CF4 conversion by using dielectric barrierdischarges (DBD). The results of this study revealed that the removalefficiency of CF4 increased with application of higher voltage, gas residence time, oxygen content, and frequency. Combined plasma catalysis(CPC) is an innovative way for abatement of PFC and experimental results indicated that combining plasma with catalysts could effectively remove CF4. Products were analyzed by Fourier transform–infrared spectroscopy (FT–IR) and the major products of the CF4 processing with DBD were CO2, COF2, and CO, when O was included in the discharge process. Preliminary results indicated that as high as 65.9% of CF4 was decomposed with CPC operated at 15 kV, 240 Hz for the gas stream containing 300 ppmv CF4,20% by volume O2, and 40% by volume Ar, with N2 as thecarrier gas.  相似文献   

6.
Plasma processing of a (CH 4 +CO 2 ) mixture can lead to the formation of synthesis gas (CO+H 2 ). The use of a nonthermal plasma for this type of process seems very promising. We report here an electric and spectroscopic characteristic of plasma created in a (CH 4 +CO 2 ) mixture by a high-voltage, steep front-voltage (>10 12 V/s), very-short-pulse triggered dielectric barrier discharge in a tubular cell. Particular attention was payed to the determination of the rotational temperature for C 2 . Time resolved investigation of the Swan band leads to an estimated value around 3000 K.  相似文献   

7.
The direct conversion of methane using a dielectric barrier discharge has been experimentally studied. Experiments with different values of flow rates and discharge voltages have been performed to investigate the effects on the conversion and reaction products both qualitatively and quantitatively. Experimental results indicate that the maximum conversion of methane has been 80% at an input flow rate of 5 ml/min and a discharge voltage of 4 kV. Experimental results also show that the optimum condition has occurred at a high discharge voltage and higher input flow rate. In terms of product distribution, a higher flow rate or shorter residence time can increase the selectivity for higher hydrocarbons. No hydrocarbon product was detected using the thermal method, except hydrogen and carbon. Increasing selectivity for ethane was found when Pt and Ru catalysts presented in the plasma reaction. Hydrogenation of acetylene in the catalyst surface could have been the reason for this phenomenon as the selectivity for acetylene in the products was decreasing.  相似文献   

8.
Pulsed corona discharge process was applied to the removal of sulfur dioxide and nitrogen oxides from simulated flue gas. The energy transfer efficiency of the pulse generation circuit and the energy utilization efficiencies for SO 2 and NO removal are evaluated and discussed. When the pulse-forming capacitance was five times larger than the geometric capacitance of the reactor, the energy utilization efficiency was maximized, and the energy requirements for NO and SO 2 removal could be lowered. With regard to radical utilization efficiency, producing small amounts of radicals frequently was found to be more advantageous than producing large amounts of radicals less frequently. Removal efficiency of SO 2 increased with the applied peak voltage, but the energy utilization efficiency was nearly independent of the peak voltage when the peak field intensity was high enough to induce corona discharge (above 10 kV cm –1 in this system).  相似文献   

9.
Treatment of H2S and NH3 using the non-thermal plasma (NTP) methods was investigated. Two NTP systems were used in this study, one consisting of a multi-cell plate-to-wire reactor (PTW), and the other consisting of an ozonization chamber and the multi-cell PTW reactor. Each cell of the PTW reactor had a sheet of copper foil embedded in dielectric layers as its high voltage electrode and a wired rack as its gounded electrode. Use of the wired rack type electrode allowed large flow throughput, and promoted intense local electric fields. The experiments showed that under constant energy input, the decomposition efficiency of H2S or NH3 decreased with increasing initial concentration of the gas, and increased with increasing injected ozone and relative humidity. Injection of NH3 into H2S stream did not improve the H2S decomposition efficiency but was necessary for removal of sulfite-containing compounds in the discharge air.  相似文献   

10.
A gas-phase oxidation method using dielectric barrier discharges (DBDs) has been developed to remove SO2 and to simultaneously remove SO2 and NO from gas streams that are similar to gas streams generated by the combustion of fossil fuels. SO2 and NO removal efficiencies are evaluated as a function of applied voltage, temperature, and concentrations of SO2, NO, H2O(g), and NH3. With constant H2O(g) concentration, both SO2 and NO removal efficiencies increase with increasing temperature from 100 to 160°C. At 160°C with 15% by volume H20(g), more than 95% of the NO and 32% of the S02 are simultaneously removed from the gas stream. Injection of NH3 into the gas stream caused an increase in S02 removal efficiency to essentially 100%. These results indicate that DBD plasmas have the potential to simultaneously remove SO2 and NO from gas streams generated by large-scale fossil fuel combustors.  相似文献   

11.
The key problem for the removal of SO2 by electrical discharge methods is how to obtain the hydroxyl radicals at high concentration and large production rates. With the micro-gap discharge method, O2 and H2O in simulated gas streams (N2/O2/H2O/SO2) are ionized into a large number of OH. radicals to oxidize SO2 into SO3 which reacts with H2O forming H2SO4 droplets at 120 °C in the absence of any catalyst or absorbent. The droplets are captured with an electrostatic precipitator. As a result, conversion of SO2 to primarily H2SO4 is limited by the generation of OH. radicals. By increasing the reduced field and concentrations of O2 and H2O, the amount of OH. radicals increase resulting in more removal of SO2 from gas streams. The removal efficiency of SO2 reaches 100% when the residence time is only 0.74 s. Therefore, a new gas-phase oxidation method for removal of SO2 without NH3 additive is found.  相似文献   

12.
《Analytical letters》2012,45(8):894-906
Studies have been performed to evaluate a direct laser induced fluorescence (LIF) technique for measurements of atmospheric sulfur dioxide (SO2). The technique is novel in that it uses a nontunable laser source that is spectrally coincident with absorption of the SO2 molecule near 223 nm that allows sensitive measurements at environmentally relevant concentrations. In this report, the spectral characteristics and analytical capabilities of the nontunable LIF approach have been evaluated and preliminary measurements of ambient SO2 are reported. The current limit of detection is 0.5 ppb and compares well to other analytical spectroscopy methods used for atmospheric measurements of SO2. The results indicate strong feasibility for the nontunable LIF approach for SO2 measurements and suggest ways for method improvement.  相似文献   

13.
This study examined processes of decomposing phenol and its derivatives (resorcin, pyrocatechol and hydroquinone) in aqueous solutions under the action of an atmospheric pressure oxygen dielectric barrier discharge in the presence or absence of catalysts in the plasma zone. Two types of catalysts were tested, NiO and TiO2. It was found that both materials exhibited catalytic properties. The action of NiO accelerated the step of phenol destruction while the action of TiO2 catalyst resulted in a more preferable composition of decomposition products and provided a higher degree of carboxylic acid conversion into carbon dioxide than the NiO catalyst.  相似文献   

14.
CARS Diagnostic and Modeling of a Dielectric Barrier Discharge   总被引:1,自引:0,他引:1  
Baeva  M.  Dogan  A.  Ehlbeck  J.  Pott  A.  Uhlenbusch  J. 《Plasma Chemistry and Plasma Processing》1999,19(4):445-466
Dielectric barrier discharges (DBD) with planar- and knife-shaped electrodes are operated in N2O2NO mixtures under a pressure of 20 and 98 kPa. They are excited by means of consecutive unipolar or bipolar high-voltage pulse packages of 10 kV at a pulse repetition rate of 1 and 2 kHz. The rotational and vibrational excitation of N 2 molecules and the reduction of nitric oxide (NO) in the discharge have been investigated using coherent anti-Stokes Raman scattering (CARS) technique. Rotational (gas) temperatures near the room temperature and vibrational temperatures of about 800 K at atmospheric pressure and 1400 K at a pressure of 20 kPa are observed. Therefore, chemical reactions of NO with vibrationally excited N 2 are probably insignificant. One-dimensional kinetic models are developed that balance 35 chemical reactions between 10 species and deliver equations for the population density of excited vibrational levels of N 2 together with a solution of the Boltzmann equation for the electrons. A good agreement between measured vibrational temperatures of N 2 , the concentration of NO, and calculated data is achieved. Modeling of the plasma discharge verifies that a DBD operated with a N2NO mixture reduces the NO content, the simultaneous presence of O 2 , already 1%, is enough to prevent the NO reduction.  相似文献   

15.
Chemical and physical modifications of polyimide (PI) surfaces caused by an air plasma have been studied. The plasma-induced surface changes of PI were investigated by using a local dielectric barrier discharge (DBD) in air at atmospheric pressure and room temperature as a function of the plasma exposure time and plasma power, while the excitation frequency was kept constant at about 130 kHz. The first results obtained in this work suggest that DBDs operating in air at atmospheric pressure can be an efficient alternative plasma source for surface treatment of polymers: a short time air plasma treatment of few seconds leads to chemical and physical changes including the rise of wettability, surface oxidation, and enhancement of surface roughness. Therefore, this simple kind of dry surface treatment seems to be an effective, low cost method for production of well-adhering subsequent layers such as metal films, paints, glues, etc. on DBD pretreated polymers.  相似文献   

16.
Selective chemical reduction of CO2(g) (with carrier Ar) in presence of organic compounds, either mixed in the gas-phase or present as a contact surface, under Dielectric Barrier Discharge is presented in this study. Along with gas-phase CO generation, added hydrocarbons (C n H 2n+x ; n = 6–12; x = 0 or 2) resulted in HCHO production with the maximum H-atom utilization efficiency being ∼15% of the total present. Product CO and HCHO were estimated separately by pre-concentration in specific absorber solutions followed by their discrete colorimetric measurements. On the other hand, in presence of various types of organic surfaces (e.g. wax, plastics and polymers, also acting simultaneously as a dielectric barrier), it was found that while CO could be estimated as above, in the ensuing chemical conversion, product HCHO was retained on these surfaces. On leaching the HCHO into the absorber solution, its production efficiency was estimated to be ∼5% of CO2.  相似文献   

17.
Experiments have been performed using pulsed high-voltage discharges with the aim of removing NO and SO 2 from flue gas obtained from a methane burner. It is found that the NO conversion is strongly increased by the addition of SO 2 or NH 3 . When both gases are added simultaneously the increase almost disappears. The synergetic effect can be maintained, as is shown, when NH 3 is introduced much later than SO 2 . The SO 2 removal is already 70% upon stoichiometric addition of NH 3 , but the electric discharge improves this to >95% and reduces the NH 3 leak to a few ppm. This increase is probably related to aerosol production by the pulsed discharge which enhances the ammonium salt production. A so-called history effect is observed, i.e., the removal of NO and SO 2 depends on the time that is taken to reach the required energization. It appears that the discharge has to create favorable conditions for the cleaning process. Using the synergetic and history effects the best cleaning result, at initial concentrations of 300 ppm, is 80% NO removal and 95% SO 2 removal with 3 ppm NH 3 leak. In this case the energy cost is 13 eV/NO (or a yield of 90 g NO and 200 g SO 2 per kWh). Possibilities for further improvement are indicated.  相似文献   

18.
A comparative study of the decomposition of Volatile Organic Compounds (VOCs: Vinyl Chloride (VC), Ethyl Acetate (EA), Toluene (T), Acetone (A)) in dielectric barrier discharges (DBD) in zero and humidified air at atmospheric pressure was performed. Small scale tubular-flow with pulse excitation and large scale planar-flow with sinusoidal excitation were used to determine the removal efficiency in dependence on inlet concentration S0 and air humidity. According to the destruction law S=S0 exp(–E/), where E is the plasma energy density, linear functions were found for the -parameters with respect to S0 containing an absolute term 0. By modeling the reaction kinetics it was possible to discriminate active species responsible for the decomposition. Ozone was confirmed to be involved in VC decomposition in zero air whereas OH radicals were best suited to explain the absolute efficiency of EA and toluene destruction in humid air. Their decomposition in zero air however, as well as the degradation of acetone cannot be explained in a similar way.  相似文献   

19.
An experimental study on the conversion of NO in the NO/N2, NO/O2/N2, NO/C2H4/N2 and NO/C2H4/O2/N2 systems has been carried out using dielectric barrier discharge (DBD) plasmas at atmospheric pressure. In the NO/N2 system, NO decomposition to N2 and O2 is the dominating reaction; NO conversion to NO2 is less significant. O2 produced from NO decomposition was detected by an on-line mass spectrometer. With the increase of NO initial concentration, the concentration of O2 produced decreases at 298 K, but slightly increases at 523 K. In the NO/O2/N2 system, NO is mainly oxidized to NO2, but NO conversion becomes very low at 523 K and over 1.6% of O2. In the NO/C2H4/N2 system, NO is reduced to N2 with about the same NO conversion as that in the NO/N2 system but without NO2 formation. In the NO/C2H4/O2/N2 system, the oxidation of NO to NO2 is dramatically promoted. At 523 K, with the increase of the energy density, NO conversion increases rapidly first, and then almost stabilizes at 93–91% of NO conversion with 61–55% of NO2 selectivity in the energy density range of 317–550 J L−1. It finally decreases gradually at high energy density. A negligible amount of N2O is formed in the above four systems. Of the four systems studied, NO conversion and NO2 selectivity of the NO/C2H4/O2/N2 system are the highest, and NO/O2/C2H4/N2 system has the lowest electrical energy consumption per NO molecule converted.  相似文献   

20.
Wen Pei 《合成通讯》2013,43(8):1209-1215
A simple and efficient synthesis of 3,4-dihydropyrimidinones or thiones is described, using silica-supported ceric sulfate [Ce(SO4)2-SiO2] as a heterogeneous catalyst from an aldehyde, 1,3-dicarbonyl compound, and urea or thiourea at 110 °C under solvent-free conditions. Compared with the classical Biginelli reaction, this new method consistently has better yields, short reaction time, easy separation, and tolerance toward various functional groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号