首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Liquid–liquid equilibria of the methanol + toluene + methylcyclohexane ternary system at 278.15, 283.15, 288.15, 293.15, 298.15 and 303.15 K are reported. The effect of the temperature on liquid–liquid equilibrium is discussed. Data for the ternary system is available from the literature at T = 298 K. All chemicals were quantified by gas chromatography using a thermal conductivity detector. Experimental data for the ternary system are compared with values calculated by the NRTL and UNIQUAC equations. It is found that the UNIQUAC and NRTL models provide similar good correlations of the solubility curve at these six temperatures.  相似文献   

4.
5.
The densities of l-alanine and l-serine in aqueous solutions of N,N-dimethylformamide (DMF) have been measured at 298.15 K with an Anton Paar Model 55 densimeter. Apparent molar volumes $ (V_{\phi } ) $ ( V ? ) , standard partial molar volumes $ (V_{\phi }^{0} ) $ ( V ? 0 ) , standard partial molar volumes of transfer $ (\Updelta_{\text{tr}} V_{\phi }^{0} ) $ ( Δ tr V ? 0 ) and hydration numbers have been determined for the amino acids. The $ \Updelta_{\text{tr}} V_{\phi }^{0} $ Δ tr V ? 0 values of l-serine are positive which suggest that hydrophilic–hydrophilic interactions between l-serine and DMF are predominant. The –CH3 group of l-alanine has much more influence on the volumetric properties and the $ \Updelta_{\text{tr}} V_{\phi }^{0} $ Δ tr V ? 0 have smaller negative values. The results have been interpreted in terms of the cosphere overlap model.  相似文献   

6.
Densities and refractive indices of mixing of olive oil with the alkanols: methanol, ethanol, 1-propanol, 2-propanol and 1-butanol, have been measured as a function of the composition at T = 298.15 K. Excess molar volumes, $ V_{\text{m}}^{\text{E}} $ , and deviation in refractive index, Δn D, were calculated and correlated by a Redlich–Kister type function, to derive the coefficients and estimate the standard error. For mixtures of olive oil with alkanols, $ V_{\text{m}}^{\text{E}} $ is positive, except with ethanol and methanol where a sigmoidal variation is observed. Δn D is positive over the entire range of mole fraction. The effect of chain length of the alkanols on the excess molar volumes and deviation in refractive index of the mixtures with olive oil are discussed.  相似文献   

7.
Heats of solution, Δsol H m , of L-cysteine, L-serine and L-asparagine amino acids have been measured at different concentrations of aqueous ethanol, propanol and 2-propanol at 298.15 K using solvation calorimetry. These data are compared with the results reported earlier for L-alanine in ethanol. The enthalpic coefficients, h xy , of the solute-organic cosolvent pair interaction in water have been obtained from the McMillan-Mayer approach and the data have been interpreted in terms of various interactions and changes in solvent structure.  相似文献   

8.
The densities, ρ 123, and speeds of sound, u 123, of ternary o-toluidine (OT, 1) + tetrahydropyran (THP, 2) + pyridine (Py) or benzene or toluene (3) mixtures have been measured as a function of composition at 298.15, 303.15 and 308.15 K. Values of the excess molar volumes, $ V_{123}^{\text{E}} , $ and excess isentropic compressibilities, $ (\kappa_{\text{S}}^{\text{E}} )_{123} , $ of the studied mixtures have been determined by employing the measured experimental data. The observed thermodynamic properties were fitted with the Redlich–Kister equation to determine adjustable ternary parameters and standard deviations. The $ V_{123}^{\text{E}} $ and $ (\kappa_{\text{S}}^{\text{E}} )_{123} $ values were also analyzed in terms of Graph theory. It was observed that Graph theory correctly predicts the sign as well as magnitude of $ V_{123}^{\text{E}} $ and $ (\kappa_{\text{S}}^{\text{E}} )_{123} $ values of the investigated mixtures. Analysis of the data suggests strong interactions and a more close packed arrangement in OT (1) + THP (2) + Py (3) mixtures as compared to those of the OT (1) + THP (2) + benzene (3) or toluene (3) mixtures. This may be due to the presence of a nitrogen atom in Py which results in stronger interactions for the OT:THP molecular entity as compared to those with benzene or toluene.  相似文献   

9.
The apparent molar volumes (V φ ) of glycine, L-alanine and L-serine in aqueous 0 to 4 mol⋅kg−1 N-methylacetamide (NMA) solutions have been obtained by density measurement at 298.15 K. The standard partial molar volumes (Vf0)V_{\phi}^{0}) and standard partial molar volumes of transfer (DtrVf0)\Delta_{\mathrm{tr}}V_{\phi}^{0}) have been determined for these amino acids. It has been show that hydrophilic-hydrophilic interactions between the charged groups of the amino acids and the –CONH– group of NMA predominate for glycine and L-serine, but for L-alanine the interactions between its side group (–CH3) and NMA predominate. The –CH3 group of L-alanine has much more influence on the value of DtrVf0\Delta_{\mathrm{tr}}V_{\phi}^{0} than that of the –OH group of L-serine. The results have been interpreted in terms of a co-sphere overlap model.  相似文献   

10.
Precise densities and viscosities at 298.15, 303.15, and 308.15?K for solutions of nicotine in water and in 0.02?mmol aqueous ethyl alcohol were measured for limiting apparent molal volume and B-coefficients calculations, respectively. These data are rationalized to illustrate hydrophilic and hydrophobic interactions between various functional groups present in these solutions.  相似文献   

11.
Enthalpies of dilution of N,N′-hexamethylenebisacetamide in water and aqueous alkali halide solutions at the concentration of 0.150 mol⋅kg−1 (approximately the concentration of physiological saline) have been determined by isothermal titration microcalorimetry at 298.15 K. The enthalpic interaction coefficients in the solutions have been calculated according to the excess enthalpy concept based on the calorimetric data. The values of enthalpic pair-wise interaction coefficients (h 2) of the solute in aqueous solutions of different salts were discussed in terms of the different alkali salt ions and weak interactions of the diluted component with coexistent species as well as the change in solvent structure caused by ions.  相似文献   

12.
Excess volumes (v^E), ultrasonic velocities (u), isentropic compressibility (△Ks) and viscosities (η) for the binary mixtures of dimethyl formamide (DMF) with 1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,2,4-trichlorobenzene, o-chlorotoluene, m-chlorotoluene, p-chlorotoluene, o-nitrotoluene and m-nitrotoluene at 303.15 K were studied. Excess volume data exhibit an inversion in sign for the mixtures of dimethyl formamide with 1,2- and 1,3-dichlorobenzenes and the property is completely positive over the entire composition range for the mixtures of dimethyl formamide with 1,2,4-trichlorobenzene, o-nitrotoluene and m-nitrotoluene. On the other hand, the quantity is negative for the mixtures of dimethyl formamide with chlorotoluenes. Isentropic compressibility (Ks) has been computed for the same systems from precise sound velocity and density data. Further, deviation of isentropic com- pressibility (△Ks) from ideal behavior was also calculated. AKs values are negative over the entire volume fraction range in all the binary mixtures. The experimental sound velocity data were analysed in terms of Free Length Theory (FLT) and Collision Factor Theory (CFT). The viscosity data were analysed on the basis of corresponding state approach. The measured data were discussed on the basis of intermolecular interactions between unlike molecules.  相似文献   

13.
Liquid–liquid equilibria of the methanol + ethylbenzene + methylcyclohexane ternary system are reported at 278.15, 283.15, and 293.15 K. The effect of the temperature on the liquid–liquid equilibrium is discussed. All chemical concentrations were quantified by gas chromatography using a thermal conductivity detector. Experimental data for the ternary system are compared with values calculated by the NRTL and UNIQUAC equations. It was found that both equations gave comparable quality representations of the experimental data for this ternary system. Distribution curves were also analyzed. Data for the ternary system is available from the literature at 303.15 K.  相似文献   

14.
Enthalpies of solution and apparent molar volumes have been determined for propionamide in aqueous methanol, ethanol and propanol solutions at 298.15 K using a C-80 microcalorimeter and a DMA60/602 vibrating-tube digital densimeter. The enthalpic and volumetric interaction coefficients have been calculated. Using the present results along with results from previous studies for formamide, the pair-interaction coefficients are discussed from the perspective of dipole-dipole and structural interactions. In addition, the triplet interaction coefficients are interpreted by using the solvent-separated association mechanism.  相似文献   

15.
In this work, the partial molar volumes of glycine and dl-alanine in aqueous solutions of ammonium sulfate at 0.0, 0.1, 0.3, 0.7, and 1.0 mol·kg?1 are determined between 278.15 and 308.15 K. Transfer volumes were obtained, which are larger for glycine than dl-alanine. On the contrary, the hydration numbers are higher for dl-alanine than glycine, and dehydration of the amino acids is observed with increasing temperature or salt molality. The data suggest that interactions between ion and charged/hydrophilic groups are predominant and, by applying the methodology proposed by Friedman and Krishnan, it was concluded that they are mainly pairwise. A group-contribution scheme has been successfully applied to the pairwise volumetric interaction coefficient. Finally, the dehydration effect on glycine, alanine and serine in the presence of different electrolytes has been rationalized in terms of the charge density and a parameter accounting for the cation’s hydration.  相似文献   

16.
Densities and electrical conductivities were measured for the ternary systems NaCl–mannitol(C6H14O6)–H2O, KCl–glycine(NH2CH2COOH)–H2O, KCl–mannitol–H2O, and NaBr–mannitol–H2O at 298.15 K. Densities of the binary systems KCl–H2O, NaBr–H2O, glycine–H2O and conductivities of the binary system NaBr–H2O at 298.15 K were also measured. The measured densities were used to check the predictions of the semi-ideal solution theory. A new approach for predicting the conductivity of ternary electrolyte−nonelectrolyte mixture solutions in terms of the properties of their binary solutions of equal water activity is presented and compared with the measured values. The results show that the semi-ideal solution theory can provide good predictions for the densities and conductivities of the tested ternary electrolyte−nonelectrolyte solutions from the properties of their binary subsystems.  相似文献   

17.
The viscosities of aqueous solutions of lithium, sodium, potassium, rubidium and caesium cyclohexylsulfamates were measured at 293.15, 298.15, 303.15, 313.15 and 323.15 K. The relative viscosity data were analyzed and interpreted in terms of the Kaminsky equation, η r=1+Ac 1/2+Bc+Dc 2. The viscosity A-coefficient was calculated from the Falkenhagen-Dole theory. The viscosity B-coefficients are positive and relatively large. Their temperature coefficient B/ T is negative or near zero for lithium and sodium salts whereas for potassium, rubidium and caesium salts it is positive. The viscosity D-coefficient is positive. This was explained by the size of the ions, structural solute–solute interactions, hydrodynamic effect, and by higher terms of the long-range Debye-Hückel type of forces. From the viscosity B-coefficients the thermodynamic functions of activation of viscous flow were calculated. The limiting partial molar Gibbs energy of activation of viscous flow of the solute was divided into contributions due to solvent molecules and the solute in the transition state. The activation energy of the solvent molecules was calculated using the limiting Gibbs energy of activation for the conductance of the solute ions. The activation energy of the solvent molecules was then discussed in terms of the nature of the alkali-metal ions and their influence on the structure of water. The limiting activation entropy and enthalpy of the solute for activation of viscous flow were interpreted by ion-solvent bond formation or breaking in the transition state of the solvent. The hydration numbers of the investigated electrolytes were calculated from the specific viscosity of the solutions.  相似文献   

18.
19.
Densities have been measured by an oscillating-tube densimeter for aqueous solutions of glycylglycine and glycylglycylglycine in aqueous xylitol solutions with xylitol mass fractions ranging from 0 to 0.15 at 298.15 K. Apparent molar volumes and limiting partial molar volumes have been used to calculate the corresponding transfer volumes from water to different concentrations of xylitol + water mixtures. The results are interpreted in terms of the cosphere overlap model.  相似文献   

20.
Surface tensions (σ) for the binary mixtures chlorocyclohexane + tetrahydrofuran and chlorobenzene + tetrahydrofuran at 298.15 K and 1.013 bar have been determined as a function of the mole fraction. In order to analyze the surface tension behavior, the extended Langmuir (EL) and Shereshefsky models were used and parameters of the models were obtained for these mixtures. The standard Gibbs energy of adsorption (\( - \Delta G^{\circ} \)) was calculated using both models. The Gibbs energy change for replacing 1 mol of solute with 1 mol of solvent in the surface region (?G S), and the excess number of molecular layers of solute in the surface region, were calculated using Shereshefsky’s model. The magnitudes of ?G S and \( - \Delta G^{\circ} \) are discussed in terms of the nature and type of intermolecular interactions in the binary mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号