首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
Ab initio calculations at the MP4(SDTQ)/6-311G//MP2/6-31G level were performed to study the structures and stabilities of the dimer of ethyl cation, (C(2)H(+)(5))(2), and related C(4)H(10)(2+) isomers. Two doubly hydrogen bridged diborane type trans 1 and cis 2 isomers were located as minima. The trans isomer was found to be more favorable than cis isomer by only 0.6 kcal/mol. Several other minima for C(4)H(10)(2+) were also located. However, the global energy minimum corresponds to C-H (C(4) position) protonated 2-butyl cation 10. Structure 10 was computed to be substantially more stable than 1 by 31.7 kcal/mol. The structure 10 was found to be lower in energy than 2-butyl cation 13 by 34.4 kcal/mol.  相似文献   

2.
Ab initio MP2/6-311G and QCISD(T)/6-311G levels as well as Gaussian-2 theory were used to perform a comparative study of the structures and stabilities of the ethane dication C(2)H(6)(2+) and its silicon analogues Si(2)H(6)(2+) and CSiH(6)(2+). Similar to previous HF/6-31G results, our present calculations also indicate that the two-electron three-center (2e-3c) bonded carbonium-carbenium structure 1 is more stable than the doubly hydrogen bridged diborane-type structure 2 by about 12 kcal/mol. For the silicon analogue Si(2)H(6)(2+) the calculations, however, indicate that the 2e-3c bonded siliconium-silicenium structure 8 is about 9 kcal/mol less stable than doubly hydrogen bridged structure 9. Similar results were also computed for carbon-silicon mixed CSiH(6)(2+) dication structures. These studies are in agreement with the more electropositive character of silicon compared to carbon. Possible dissociation paths of the minimum structures were also calculated.  相似文献   

3.
Structures of the tert-pentyl cation (C(5)H(11)(+)) and its protonated dication (C(5)H(12)(2+), isopentane dication) were studied using ab initio methods at the MP2/cc-pVTZ level. Both C-C and C-H hyperconjugatively stabilized structures 1 and 2 , respectively, were found to be minima on the potential energy surface (PES) of the tert-pentyl cation. Structure 1 was computed to be about as stable as structure 2 (slightly more stable by 0.5 kcal mol(-1)). Inter-conversion between 1 and 2 through transition state 3 has a kinetic barrier of only 1.5 kcal mol(-1). The C-H protonated form (H(3)C)(2)C(+)CH(2)CH(4)(+)4 was found to be the global minimum for the protonated tert-pentyl dication. Charges and (13)C NMR chemical shifts of the dication 4 were calculated and compared to those of monocation 1 to study the effect of the additional charge in the dication.  相似文献   

4.
Density functional theory (DFT) at the hybrid B3LYP level has been applied to Ge(12)(z) bare germanium clusters (z = -6, -4, -2, 0, +2, +4, +6) starting from 11 initial configurations. The Wade-Mingos rules are seen to have limited value in rationalizing the results since they frequently require vertex degrees higher than the optimum vertex degree of 4 for germanium. Thus the expected I(h) regular icosahedron is no longer the global minimum for Ge(12)(2-) although it remains a low energy structure for Ge(12)(2-) lying only 5.6 kcal mol(-1) above a bicapped arachno structure conforming to the Wade-Mingos rules. The three lowest energy structures for Ge(12)(4-) within 11 kcal mol(-1) are a prolate (elongated) polyhedron with six quadrilateral faces and eight triangular faces, the dual of the bisdisphenoid with four trapezoidal and four pentagonal faces, and a polyhedron with two quadrilateral and 16 triangular faces related but not identical to the polyhedron found in the known tetracarbon carboranes R(4)C(4)B(8)H(8). The lowest energy structures for the neutral Ge(12) are seen to be distorted versions of the icosahedron and the bicapped 10-vertex arachno lowest energy structures for Ge(12)(2-). The low energy structures for the even more hypoelectronic Ge(12)(2+) and Ge(12)(4+) are even more unusual including a hexacapped octahedron, a tetracapped square antiprism, and a double cube for Ge(12)(2+) and a C(2v) structure with a central unique degree 6 vertex for Ge(12)(4+).  相似文献   

5.
We analyzed chemical bonding in low-lying isomers of the recently computationally predicted B(6)H(6)Li(6) molecule. According to our calculations the benzene-like B(6)H(6)Li(6) (D(2h), (1)A(1g)) arachno structure with the planar aromatic B(6)H(6)(6-) anion is the most stable one. A nido isomer with two aromatic B(6)H(6)(4-) (pentagonal pyramid) and Li(3)(+) (triangular) moieties, which can be considered as derived from the global minimum structure through a two-electron intramolecular transfer from B(6)H(6)(6-) to three Li(+) cations, was found to be 10.7 kcal/mol higher in energy. A closo isomer with three aromatic moieties (octahedral B(6)H(6)(2-) and two Li(3)(+)) was found to be 31.3 kcal/mol higher in energy than the global minimum. Another isomer with three aromatic moieties (two B(3)H(3)(2-) and Li(3)(+)) was found to be substantially higher in energy (74.4 kcal/mol). Thus, the intramolecular electron transfers from the highly charged B(6)H(6)(6-) anion to cations are not favorable for the B(6)H(6)Li(6) molecule, even when a formation of three-dimensional aromatic B(6)H(6)(2-) anion and two sigma-aromatic Li(3)(+) cations occurs in the closo isomer.  相似文献   

6.
Density functional theory (DFT) at the hybrid B3LYP level has been applied to the germanium clusters Ge(11)(z) (z = -6, -4, -2, 0, +2, +4, +6) starting from eight different initial configurations. The global minimum within the Ge(11)(2-) set is an elongated pentacapped trigonal prism distorted from D(3)(h) to C(2v) symmetry. However, the much more spherical edge-coalesced icosahedron, also of C(2v) symmetry, expected by the Wade-Mingos rules for a 2n + 2 skeletal electron system and found experimentally in B(11)H(11)(2-) and isoelectronic carboranes, is of only slightly higher energy (+5.2 kcal/mol). Even more elongated D(3)(h) pentacapped trigonal prisms are the global minima for the electron-rich structures Ge(11)(4-) and Ge(11)(6-). For Ge(11)(4-) the C(5v) 5-capped pentagonal antiprism analogous to the dicarbollide ligand C(2)B(9)H(11)(2-) is of significantly higher energy (approximately 28 kcal/mol) than the D(3h) global minimum. The C(2v) edge-coalesced icosahedron is also the global minimum for the electron-poor Ge(11) similar to its occurrence in experimentally known 11-vertex "isocloso" metallaboranes of the type (eta(6)-arene)RuB(10)H(10). The lowest energy polyhedral structures computed for the more hypoelectronic Ge(11)(4+) and Ge(11)(6+) clusters are very similar to those found experimentally for the isoelectronic ions E(11)(7-) (E = Ga, In, Tl) and Tl(9)Au(2)(9-) in intermetallics in the case of Ge(11)(4+) and Ge(11)(6+), respectively. These DFT studies predict an interesting D(5h) centered pentagonal prismatic structure for Ge(11)(2+) and isoelectronic metal clusters.  相似文献   

7.
We report computational studies on Al(+)(H(2)O)(n), and HAlOH(+)(H(2)O)(n-1), n = 6-14, by the density functional theory based ab initio molecular dynamics method, employing a planewave basis set with pseudopotentials, and also by conventional methods with Gaussian basis sets. The mechanism for the intracluster H(2) elimination reaction is explored. First, a new size-dependent insertion reaction for the transformation of Al(+)(H(2)O)(n), into HAlOH(+)(H(2)O)(n-1) is discovered for n > or = 8. This is because of the presence of a fairly stable six-water-ring structure in Al(+)(H(2)O)(n) with 12 members, including the Al(+). This structure promotes acidic dissociation and, for n > or = 8, leads to the insertion reaction. Gaussian based BPW91 and MP2 calculations with 6-31G* and 6-31G** basis sets confirmed the existence of such structures and located the transition structures for the insertion reaction. The calculated transition barrier is 10.0 kcal/mol for n = 9 and 7.1 kcal/mol for n = 8 at the MP2/6-31G** level, with zero-point energy corrections. Second, the experimentally observed size-dependent H(2) elimination reaction is related to the conformation of HAlOH(+)(H(2)O)(n-1), instead of Al(+)(H(2)O)(n). As n increases from 6 to 14, the structure of the HAlOH(+)(H(2)O)(n-1) cluster changes into a caged structure, with the Al-H bond buried inside, and protons produced in acidic dissociation could then travel through the H(2)O network to the vicinity of the Al-H bond and react with the hydride H to produce H(2). The structural transformation is completed at n = 13, coincident approximately with the onset of the H(2) elimination reaction. From constrained ab initio MD simulations, we estimated the free energy barrier for the H(2) elimination reaction to be 0.7 eV (16 kcal/mol) at n = 13, 1.5 eV (35 kcal/mol) at n = 12, and 4.5 eV (100 kcal/mol) at n = 8. The existence of transition structures for the H(2) elimination has also been verified by ab initio calculations at the MP2/6-31G** level. Finally, the switch-off of the H(2) elimination for n > 24 is explored and attributed to the diffusion of protons through enlarged hydrogen bonded H(2)O networks, which reduces the probability of finding a proton near the Al-H bond.  相似文献   

8.
The structures and stabilities of gitonic and distonic alkanonium dications, i.e., diprotonated alkane dications C(n)H(2n+4)(2+) (n = 1-4), were investigated at the MP4(SDTQ)/6-311G**//MP2/6-31G** level. The global minimum energy structures (2, 4, 7, and 10) of the C(n)H(2n+4)(2+) dications are double C--H protonated alkanes to give structures with two two electron three-center (2e-3c) bonds. Two different dissociation pathways for the dications, viz deprotonation and demethylation, were also computed. Demethylation was found to be the favorable mode of dissociation.  相似文献   

9.
Small hydrocarbon complexes (X@cage) incorporating cage-centered endohedral atoms and ions (X = H(+), H, He, Ne, Ar, Li(0,+), Be(0,+,2+), Na(0,+), Mg(0,+,2+)) have been studied at the B3LYP/6-31G(d) hybrid HF/DFT level of theory. No tetrahedrane (C(4)H(4), T(d)()) endohedral complexes are minima, not even with the very small hydrogen atom or beryllium dication. Cubane (C(8)H(8), O(h)()) and bicyclo[2.2.2]octane (C(8)H(14), D(3)(h)()) minima are limited to encapsulating species smaller than Ne and Na(+). Despite its intermediate size, adamantane (C(10)H(16), T(d)()) can enclose a wide variety of endohedral atoms and ions including H, He, Ne, Li(0,+), Be(0,+,2+), Na(0,+), and Mg(2+). In contrast, the truncated tetrahedrane (C(12)H(12), T(d)()) encapsulates fewer species, while the D(4)(d)() symmetric C(16)H(16) hydrocarbon cage (see Table of Contents graphic) encapsulates all but the larger Be, Mg, and Mg(+) species. The host cages have more compact geometries when metal atoms, rather than cations, are inside. This is due to electron donation from the endohedral metals into C-C bonding and C-H antibonding cage molecular orbitals. The relative stabilities of endohedral minima are evaluated by comparing their energies (E(endo)) to the sum of their isolated components (E(inc) = E(endo) - E(cage) - E(x)) and to their exohedral isomer energies (E(isom) = E(endo) - E(exo)). Although exohedral binding is preferred to endohedral encapsulation without exception (i.e., E(isom) is always exothermic), Be(2+)@C(10)H(16) (T(d)(); -235.5 kcal/mol), Li(+)@C(12)H(12) (T(d)(); 50.2 kcal/mol), Be(2+)@C(12)H(12) (T(d)(); -181.2 kcal/mol), Mg(2+)@C(12)H(12) (T(d)(); -45.0 kcal/mol), Li(+)@C(16)H(16) (D(4)(d)(); 13.3 kcal/mol), Be(+)@C(16)H(16) (C(4)(v)(); 31.8 kcal/mol), Be(2+)@C(16)H(16) (D(4)(d)(); -239.2 kcal/mol), and Mg(2+)@C(16)H(16) (D(4)(d)(); -37.7 kcal/mol) are relatively stable as compared to experimentally known He@C(20)H(20) (I(h)()), which has an E(inc) = 37.9 kcal/mol and E(isom) = -35.4 kcal/mol. Overall, endohedral cage complexes with low parent cage strain energies, large cage internal cavity volumes, and a small, highly charged guest species are the most viable synthetic targets.  相似文献   

10.
11.
The structures and energies of the carbocations C 4H 7 (+) and C 5H 9 (+) were calculated using the ab initio method. The (13)C NMR chemical shifts of the carbocations were calculated using the GIAO-CCSD(T) method. The pisigma-delocalized bisected cyclopropylcarbinyl cation, 1 and nonclassical bicyclobutonium ion, 2 were found to be the minima for C 4H 7 (+) at the MP2/cc-pVTZ level. At the MP4(SDTQ)/cc-pVTZ//MP2/cc-pVTZ + ZPE level the structure 2 is 0.4 kcal/mol more stable than the structure 1. The (13)C NMR chemical shifts of 1 and 2 were calculated by the GIAO-CCSD(T) method. Based on relative energies and (13)C NMR chemical shift calculations, an equilibrium involving the 1 and 2 in superacid solutions is most likely responsible for the experimentally observed (13)C NMR chemical shifts, with the latter as the predominant equilibrating species. The alpha-methylcyclopropylcarbinyl cation, 4, and nonclassical bicyclobutonium ion, 5, were found to be the minima for C 5H 9 (+) at the MP2/cc-pVTZ level. At the MP4(SDTQ)/cc-pVTZ//MP2/cc-pVTZ + ZPE level ion 5 is 5.9 kcal/mol more stable than the structure 4. The calculated (13)C NMR chemical shifts of 5 agree rather well with the experimental values of C 5H 9 (+).  相似文献   

12.
[reaction: see text] Automerization in tri-trans-[12]annulene (1) was investigated by DFT, MP2, and coupled-cluster methods. Using the highest level of theory employed here, CCSD(T)/cc-pVDZ//BHandHLYP/6-311+G(d,p), we located two low-energy pathways for degenerate conformational change from the lowest-energy conformer of 1 (1a): one with E(a) = 4.5 kcal/mol that interconverts the three inner trans hydrogens with the three outer trans hydrogens and one with E(a) = 2.7 kcal/mol that interconverts the three inner hydrogens with each other. These results are consistent with the experimental results of Oth and co-workers on [12]annulene 1a (Oth, J. F. M.; R?ttele, H.; Schr?der, G. Tetrahedron Lett. 1970, 61). The conformational exchange of the inner trans hydrogens with the outer ones is predicted to occur via a one-step process involving a C(2)-symmetric transition state and not via the D(3)-symmetric transition state (1b) that was postulated earlier. Conformer 1b was found to be a shallow minimum 6.7 kcal/mol above 1a with a barrier of 0.4 kcal/mol for conversion to 1a. Finally, GIAO-B3LYP/6-311+G(d,p) and BHandHLYP/6-311+G(d,p) computed (1)H NMR chemical shifts of 1a and three other low-lying isomers support Oth's original assignment of observed (1)H NMR peaks to 1a at both low and high temperature.  相似文献   

13.
The reaction of Ru(5)(CO)(12)(eta(6)-C(6)H(6))(mu(5)-C), 7, with Pt(PBu(t)(3))(2) yielded two products Ru(5)(CO)(12)(eta(6)-C(6)H(6))(mu(6)-C)[Pt(PBu(t)(3))], 8, and Ru(5)(CO)(12)(eta(6)-C(6)H(6))(mu(6)-C)[Pt(PBu(t)(3))](2), 9. Compound 8 contains a Ru(5)Pt metal core in an open octahedral structure. In solution, 8 exists as a mixture of two isomers that interconvert rapidly on the NMR time scale at 20 degrees C, DeltaH() = 7.1(1) kcal mol(-1), DeltaS() = -5.1(6) cal mol(-)(1) K(-)(1), and DeltaG(298)(#) = 8.6(3) kcal mol(-1). Compound 9 is structurally similar to 8, but has an additional Pt(PBu(t)(3)) group bridging an Ru-Ru edge of the cluster. The two Pt(PBu(t)(3)) groups in 9 rapidly exchange on the NMR time scale at 70 degrees C, DeltaH(#) = 9.2(3) kcal mol(-)(1), DeltaS(#) = -5(1) cal mol(-)(1) K(-)(1), and DeltaG(298)(#) = 10.7(7) kcal mol(-1). Compound 8 reacts with hydrogen to give the dihydrido complex Ru(5)(CO)(11)(eta(6)-C(6)H(6))(mu(6)-C)[Pt(PBu(t)(3))](mu-H)(2), 10, in 59% yield. This compound consists of a closed Ru(5)Pt octahedron with two hydride ligands bridging two of the four Pt-Ru bonds.  相似文献   

14.
Multireference [complete active space self-consistent field (CASSCF) and multiconfigurational quasidegenerate perturbation theory (MCQDPT)] and single-reference ab initio (Moller-Plesset second order perturbation theory (MP2) and coupled clusters with singles, doubles and noniterative triples [CCSD(T)]) and density functional theory (PBE and B3LYP) electronic structure calculations of V(C(6)H(6))(+) half-sandwich in the states of different multiplicities are described and compared. Detailed analyses of the geometries and electronic structures of the all found states are given; adiabatic and diabatic dissociation energies are estimated. The lowest electronic state of V(C(6)H(6))(+) half-sandwich was found to be the quintet (5)B(2) state with a slightly deformed upside-down-boat-shaped benzene ring and d(4) configuration of V atom, followed by a triplet (3)A(2) state lying about 4 kcal/mol above. The lowest singlet state (1)A(1)(d(4)) lies much ( approximately 28 kcal/mol) higher. MCQDPT calculated adiabatic dissociation energy (53.6 kcal/mol) for the lowest (5)B(2)(d(4)) state agrees well with the current 56.4 (54.4) kcal/mol experimental estimate, giving a preference to the lower one. Compared to MCQDPT, B3LYP hybrid exchange-correlation functional provides the best results, while CCSD(T) performs usually worse. Gradient-corrected PBE calculations tend to systematically overestimate metal-benzene binding in the row quintet相似文献   

15.
Quantum chemical calculations have been carried out to determine the electronic ground state of the parent 1,3,5-triaminobenzene trication triradical (TAB3+,C6H9N3 3+) containing a six-membered benzene ring coupled with three exocyclic amino NH(*+)2 groups, each containing an unpaired electron, as the simplest model for high-spin polyarylamine polycations. Related triradicals, including the 1,3,5-trimethylenebenzene (TMB, C9H9) and its nitrogen derivatives such as the monocation C8H9N+, the dication C7H9N2 2+, and the neutral C8H8N, C7H7N2, and C6H6N3 systems containing NH groups, have also been considered. Results obtained using the CASSCF [multiconfigurational complete active space (SCF--self-consistent field)] method, with active spaces ranging from (9e/9o) to (15e/12o), followed by second-order perturbation theory [CASPT2 and MS-CASPT2 (MS--multistate)] with polarized 6-311G(d,p) and natural orbital (ANO-L) basis sets reveal the following: (i) both TAB3+ and TMB (D3h) have a quartet 4A"1 ground state with doublet-quartet 2B1-4A"1 energy gaps of 8.0+/-2.0 and 12.4+/-2.0 kcal/mol, respectively; (ii) in the neutral N series, the quartet state remains the electronic ground state, irrespective of the number of N atoms, but each with slightly reduced gap, 11 kcal/mol for C8H8N (4A"), 10 kcal/mol for C7H7N2 (4A2), and 9 kcal/mol for C6H6N3 (4A2); and (iii) the ground state of monoamino cation and diamino dication is a low-spin doublet state (2B1 for C8H9N+ and 2A2 for C7H9N2 2+) and lying well below the corresponding quartet state by 10 and 12 kcal/mol, respectively. In the monocationic and dicationic amino systems, a slight preference is found for the low-spin state, apparently violating Hund's rule. This effect is due to the splitting of the orbital energies and the presence of the positive charge whose delocalization strongly modifies the electronic distribution and some structural features. In the latter cations, the positive charge basically pushes unpaired electrons onto the ring forming a kind of distonic radical cations and thus gives a preference for a low-spin state.  相似文献   

16.
Lupan A  King RB 《Inorganic chemistry》2011,50(19):9571-9577
Theoretical studies show that the 10-vertex system Cp(2)Fe(2)C(2)B(6)H(8) is the only one of the 2n skeletal electron Cp(2)Fe(2)C(2)B(n-4)H(n-2) systems (n = 9, 10, 11, 12) for which a true isocloso deltahedron having a single degree 6 vertex is highly favored over alternative structures. This is demonstrated by the occurrence of only the 10-vertex isocloso deltahedron as the central Fe(2)C(2)B(6) polyhedron in all nine of the Cp(2)Fe(2)C(2)B(6)H(8) structures within 8 kcal/mol of the global minimum. Low energy isocloso structures are also observed for the 11-vertex Cp(2)Fe(2)C(2)B(7)H(9). However, interspersed with these isocloso structures are Cp(2)Fe(2)C(2)B(7)H(9) structures based on deltahedra having two or more degree 6 vertices. For the 12-vertex Cp(2)Fe(2)C(2)B(8)H(10), the six lowest energy structures all have central Fe(2)C(2)B(8) deltahedra with two degree 6 vertices, one for each iron atom. The Cp(2)Fe(2)C(2)B(8)H(10) structures having a central Fe(2)C(2)B(8) icosahedron with all degree 5 vertices lie at significantly higher energies, starting at 17.8 kcal/mol above the global minimum. The 9-vertex Cp(2)Fe(2)C(2)B(5)H(7) system appears to be too small for isocloso structures to be favorable, although three such structures are found at energies between 5.5 and 8.0 kcal/mol above the global minimum. Five Cp(2)Fe(2)C(2)B(5)H(7) structures based on the tricapped trigonal prism lie in an energy below the lowest energy isocloso structure. The lowest energy Cp(2)Fe(2)C(2)B(5)H(7) structure and two higher energy structures within 8.0 kcal/mol of the global minimum have central Fe(2)C(2)B(5) deltahedra with a degree 6 vertex for each iron atom.  相似文献   

17.
The structures and energies of N(6)(2+) and N(4)(2+) were calculated by using the density functional theory method at the B3LYP/cc-aug-pVTZ level. The C(2)(h)() symmetric form 1 and D(infinity)(h) form 5 were found to be the stable minima for N(6)(2+) and N(4)(2+), respectively. Dissociation of 1 into 5 and N(2) was computed to be endothermic by 25.1 kcal/mol. (15)N NMR chemical shifts and vibrational frequencies of 1 and 5 were also calculated. Interactions of 1 and 5 with azide ions were also probed representing N(12) and N(10).  相似文献   

18.
The heats of formation of saturated and unsaturated diaminocarbenes (imadazol(in)-2-ylidenes) have been calculated by using high levels of ab initio electronic structure theory. The calculations were done at the coupled cluster level through noniterative triple excitations with augmented correlation consistent basis sets up through quadruple. In addition, four other corrections were applied to the frozen core atomization energies: (1) a zero point vibrational correction; (2) a core/valence correlation correction; (3) a scalar relativistic correction; (4) a first-order atomic spin-orbit correction. The value of DeltaHf( 298) for the unsaturated carbene 1 is calculated to be 56.4 kcal/mol. The value of DeltaHf( 298) for the unsaturated triplet carbene (3)1 is calculated to be 142.8 kcal/mol, giving a singlet-triplet splitting of 86.4 kcal/mol. Addition of a proton to 1 forms 3 with DeltaHf( 298)(3) = 171.6 kcal/mol with a proton affinity for 1 of 250.5 kcal/mol at 298 K. Addition of a hydrogen atom to 1 forms 4 with DeltaHf( 298)(4) = 72.7 kcal/mol and a C-H bond energy of 35.8 kcal/mol at 298 K. Addition of H- to 1 gives 5 with DeltaHf( 298)(5) = 81.2 kcal/mol and 5 is not stable with respect to loss of an electron to form 4. Addition of H2 to the carbene center forms 6 with DeltaHf( 298)(6) = 41.5 kcal/mol and a heat of hydrogenation at 298 K of -14.9 kcal/mol. The value of DeltaHf( 298) for the saturated carbene 7 (obtained by adding H2 to the C=C bond of 1) is 47.4 kcal/mol. Hydrogenation of 7 to form the fully saturated imidazolidine, 8, gives DeltaHf( 298)(8) = 14.8 kcal/mol and a heat of hydrogenation at 298 K of -32.6 kcal/mol. The estimated error bars for the calculated heats of formation are +/-1.0 kcal/mol.  相似文献   

19.
We have studied the solvation of uranyl, UO(2)(2+), and the reduced species UO(OH)(2+) and U(OH)(2)(2+) systematically using three levels of approximation: direct application of a continuum model (M1); explicit quantum-chemical treatment of the first hydration sphere (M2); a combined quantum-chemical/continuum model approach (M3). We have optimized complexes with varying numbers of aquo ligands (n = 4-6) and compared their free energies of solvation. Models M1 and M2 have been found to recover the solvation energy only partially, underestimating it by approximately 100 kcal/mol or more. With our best model M3, the calculated hydration free energy Delta(h)G degrees of UO(2)(2+) is about -420 kcal/mol, which shifts to about -370 kcal/mol when corrected for the expected error of the model. This value agrees well with the experimentally determined interval, -437 kcal/mol < Delta(h)G degrees < -318 kcal/mol. Complexes with 5 and 6 aquo ligands have been found to be about equally favored with models M2 and M3. The same solvation models have been applied to a two-step reduction of UO(2)(2+) by water, previously theoretically studied in the gas phase. Our results show that the solvation contribution to the reaction free energy, about 60 kcal/mol, dominates the endoergicity of the reduction.  相似文献   

20.
Pincer complexes of the type ((R)PCP)IrH(2), where ((R)PCP)Ir is [eta(3)-2,6-(R(2)PCH(2))(2)C(6)H(3)]Ir, are the most effective catalysts reported to date for the "acceptorless" dehydrogenation of alkanes to yield alkenes and free H(2). We calculate (DFT/B3LYP) that associative (A) reactions of ((Me)PCP)IrH(2) with model linear (propane, n-PrH) and cyclic (cyclohexane, CyH) alkanes may proceed via classical Ir(V) and nonclassical Ir(III)(eta(2)-H(2)) intermediates. A dissociative (D) pathway proceeds via initial loss of H(2), followed by C-H addition to ((Me)PCP)Ir. Although a slightly higher energy barrier (DeltaE(+ +)) is computed for the D pathway, the calculated free-energy barrier (DeltaG(+ +)) for the D pathway is significantly lower than that of the A pathway. Under standard thermodynamic conditions (STP), C-H addition via the D pathway has DeltaG(o)(+ +) = 36.3 kcal/mol for CyH (35.1 kcal/mol for n-PrH). However, acceptorless dehydrogenation of alkanes is thermodynamically impossible at STP. At conditions under which acceptorless dehydrogenation is thermodynamically possible (for example, T = 150 degrees C and P(H)2 = 1.0 x 10(-7) atm), DeltaG(+ +) for C-H addition to ((Me)PCP)Ir (plus a molecule of free H(2)) is very low (17.5 kcal/mol for CyH, 16.7 kcal/mol for n-PrH). Under these conditions, the rate-determining step for the D pathway is the loss of H(2) from ((Me)PCP)IrH(2) with DeltaG(D)(+ +) approximately DeltaH(D)(+ +) = 27.2 kcal/mol. For CyH, the calculated DeltaG(o)(+ +) for C-H addition to ((Me)PCP)IrH(2) on the A pathway is 35.2 kcal/mol (32.7 kcal/mol for n-PrH). At catalytic conditions, the calculated free energies of C-H addition are 31.3 and 33.7 kcal/mol for CyH and n-PrH addition, respectively. Elimination of H(2) from the resulting "seven-coordinate" Ir-species must proceed with an activation enthalpy at least as large as the enthalpy change of the elimination step itself (DeltaH approximately 11-13 kcal/mol), and with a small entropy of activation. The free energy of activation for H(2) elimination (DeltaG(A)(+ +)) is hence found to be greater than ca. 36 kcal/mol for both CyH and n-PrH under catalytic conditions. The overall free-energy barrier of the A pathway is calculated to be higher than that of the D pathway by ca. 9 kcal/mol. Reversible C-H(D) addition to ((R)PCP)IrH(2) is predicted to lead to H/D exchange, because the barriers for hydride scrambling are extremely low in the "seven-coordinate" polyhydrides. In agreement with calculation, H/D exchange is observed experimentally for several deuteriohydrocarbons with the following order of rates: C(6)D(6) > mesitylene-d(12) > n-decane-d(22) > cyclohexane-d(12). Because H/D exchange in cyclohexane-d(12) solution is not observed even after 1 week at 180 degrees C, we estimate that the experimental barrier to cyclohexane C-D addition is greater than 36.4 kcal/mol. This value is considerably greater than the experimental barrier for the full catalytic dehydrogenation cycle for cycloalkanes (ca. 31 kcal/mol). Thus, the experimental evidence, in agreement with calculation, strongly indicates that the A pathway is not kinetically viable as a segment of the "acceptorless" dehydrogenation cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号