首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bimetallic cobalt-ruthenium nano catalysts supported on carbon nanotubes(CNTs)are prepared using microemultion technique with water-to-surfactant ratios of 0.5—1.5.The nano catalysts were extensively characterized by different methods and their activity and selectivity in Fischer-Tropsch synthesis(FTS)have been assessed in a fixed-bed microreactor.The physicochemical properties and performance of the nanocatalysts were compared with the catalyst prepared by impregnation method.Very narrow particle size distribution has been produced by the microemulsion technique at relatively high loadings of active metals(15 wt%Co and 1 wt%Ru).According to TEM images,small Co particles(2—7 nm)were mostly confined inside the CNTs.Comparing with the catalyst prepared by impregnation,the use of microemulsion technique with water to surfactant ratio of 0.5 decreased the average cobalt oxide particle size to 4.8 nm,the dispersion was almost doubled and the reduction increased by 28%.Activity and selectivity were found to be dependent on the catalyst preparation method and water-to-surfactant ratio(as well as cobalt particle sizes).CO conversion increased from 59.1%to 75.1%and the FTS rate increased from 0.291 to0.372 gHC/(gcath).C5+liquid hydrocarbons selectivity decreased from 92.4%to 87.6%.  相似文献   

2.
The existence of bimetallic particles (and their reducibility and location on/or in the support) in Ru–Co/NaY and Pt–Co/NaY samples has been studied by in situ X-ray adsorption spectroscopy (XAS). It is established that in Ru–Co/NaY the monometallic clusters maintain their identity, whereas in Pt–Co/NaY the existence of small bimetallic particles can be established. In both cases the results are supported by other techniques, such as XPS and temperature-programmed reduction. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
In this work the influence of poly(N-vinyl pyrrolidone) (PVP) concentration in water on the organization and dynamics of the corresponding macro-/nanogel networks has been systematically investigated. Irradiation has been performed at the same irradiation dose (within the sterilization dose range) and dose rate. In the selected irradiation conditions, the transition between macroscopic gelation and micro-/nanogels formation is observed just below the critical overlap concentration (~1 wt%), whereas the net prevalence of intra-molecular over inter-molecular crosslinking occurs at a lower polymer concentration (below 0.25 wt%). Dynamic–mechanical spectroscopy has been applied as a classical methodology to estimate the network mesh size for macrogels in their swollen state, while 13C NMR spin–lattice relaxation spectroscopy has been applied on both the macrogel and nanogel freeze dried residues to withdraw interesting information of the network spatial organization in the passage of scale from macro to nano.  相似文献   

4.
Use of microfluidic devices in the life sciences and medicine has created the possibility of performing investigations at the molecular level. Moreover, microfluidic devices are also part of the technological framework that has enabled a new type of scientific information to be revealed, i.e. that based on intensive screening of complete sets of gene and protein sequences. A deeper bioanalytical perspective may provide quantitative and qualitative tools, enabling study of various diseases and, eventually, may offer support for the development of accurate and reliable methods for clinical assessment. This would open the way to molecule-based diagnostics, i.e. establish accurate diagnosis and disease prognosis based on identification and/or quantification of biomacromolecules, for example proteins or nucleic acids. Finally, the development of disposable and portable devices for molecule-based diagnosis would provide the perfect translation of the science behind life-science research into practical applications dedicated to patients and health practitioners. This review provides an analytical perspective of the impact of microfluidics on the detection and characterization of bio-macromolecules involved in pathological processes. The main features of molecule-based diagnostics and the specific requirements for the diagnostic devices are discussed. Further, the techniques currently used for testing bio-macromolecules for potential diagnostic purposes are identified, emphasizing the newest developments. Subsequently, the challenges of this type of application and the status of commercially available devices are highlighted, and future trends are noted.  相似文献   

5.
By combining sol–gel technology with emulsion chemistry, it is possible to produce spherical particles with a designed microstructure based on a judicious choice of solvent/surfactant and sol–gel reaction parameters. When an active molecule is located in the aqueous droplet of a water-in-oil (W/O) emulsion, encapsulation occurs as the silicon precursors polymerise to build an oxide cage around the active species. By changing the solvent–surfactant combination, the particle size can be varied from 10 nm to 100 μm. The size of the particles is controlled by the size of the emulsion droplet, which acts as a nano-reactor for the sol–gel reaction. The release profiles can be tailored, independently of the particle size, by controlling the internal structure of the particles: pore volume, pore size, tortuosity, and surface chemistry (e.g. by introduction of trialkoxysilane). This can be easily achieved by controlling sol–gel processing parameters such as the water-to-alkoxide ratio, pH, alkoxide concentration, ageing, drying time and temperature. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
Reversible transformations Ni(IV)↔Ni(II) in alumina and Sibunit supported (Ni,Mo) sulfide catalysts were observed after in situ thermal treatment of catalysts in an X-ray photoelectron spectrometer chamber. The phenomenon is interpreted as a reductive elimination of occluded hydrogen under low pressure and high temperature, and oxidative addition of hydrogen after catalyst treatment with an (H2+H2S) mixture.  相似文献   

7.
It is important that we understand the physical, chemical, and biological mechanisms that govern the interaction between nanoparticles (NPs) and heterogeneous cellular surfaces because of the possible cytotoxicity of engineered nanomaterials. In this study, we investigated the lateral localization of nano/microparticles within a biomimetic heterogeneous membrane interface using cell-sized two-phase liposomes. We found that lateral heterogeneity in the membrane mediates the partitioning of nano/microparticles in a size-dependent manner: small particles with a diameter of ≤200 nm were localized in an ordered phase, whereas large particles preferred a fluidic disordered phase. This partitioning behavior was verified by temperature-controlled membrane miscibility transition and laser-trapping of associated particles. In terms of the membrane elastic energy, we present a physical model that explains this localization preference of nano/microparticles. The calculated threshold diameter of particles that separates the particle-partitioning phase was 260 nm, which is in close agreement with our observation (200 nm). These findings may lead to a better understanding of the basic mechanisms that underlie the association of nanomaterials within a cell surface.  相似文献   

8.
9.
The influence of germanium on the behavior of a Pt/Al2O3 catalyst was studied in normal heptane reforming in order to compare activity, selectivity and life of Pt/Al2O3; Ge/Al2O3 and Pt–Ge/Al2O3 catalysts. It is suggested that the presence of germanium results in lower carbon content on the catalyst and less pronounced catalyst deactivation with an increase in aromatics selectivity.
Pt/Al2O3 - , Pt/Al2O3, Ge/Al2O3 Pt–Ge/Al2O3. , .
  相似文献   

10.
In the absence of solvent, the first-row transition-metal acetylacetonate complexes and RuCl2(PPh3)3 give fairly high turnovers for the allylic oxidation of cyclohexene under atmospheric pressure of oxygen. Synergetic effect is observed for the oxidation of cyclohexene by using M(acac)n−RuCl2(PPh3)3 bimetallic catalysts.  相似文献   

11.
The influence of rhenium on the behavior of a Pt/Al2O3 catalyst was studied in n-hexane reaction by means of dilution of the catalyst bed with Re/Al2O3. Parallel to activity, selectivity and ageing data obtained in slug pulse and continuous flow reactors, the amount of the surface carbon formed during the reaction was determined and its reactivity in hydrogen atmosphere was also studied. It is suggested that in the presence of rhenium due to the increase in the amount of hydrogen available for hydrogen consuming reactions including hydrodepolymerization of the carbonaceous surface overlayer, the routes of ageing processes are changed, resulting in lower carbon content on the catalyst and less pronounced catalyst deactivation.
Pt/Al2O3 -, Re/Al2O3. , , , , . , , , , , , , .
  相似文献   

12.
The Gibbs free energies of key elementary steps for the electrocatalytic oxygen reduction reaction (ORR) are calculated with B3LYP type of density functional theory: O2 + M + H+ + e- (0 eV) --> HOO-M (deltaG1), HOO-M + M --> HO-M + O-M (deltaG2), O2 + 2M + H+ + e- (0 eV) --> O-M + HO-M (deltaG3), and HO-M + O-M + 3H+ + 3e- (0 eV) --> 2H2O + 2M (deltaG4), where H+ is modeled as H3(+)O(H2O)3 and M stands for the adsorption site of a metal catalyst modeled by a single metal atom as well as by an M3 cluster. Taking Pt as a reference, deltaG4 is plotted against deltaG1 for 17 metals from groups V to XII. It is found that no single metal has both deltaG1 and deltaG4 more negative than Pt, although some of them have either more negative deltaG1 or more negative deltaG4. This enables us to explain thermodynamically why no other single metal catalyzes the ORR as effectively as Pt does. Moreover, a thermodynamic analysis reveals that the signs of delta deltaG (the difference between deltaG of other metals and deltaG of Pt) strongly correlate with the valence electronic structure of metals, i.e., delta deltaG1 < 0 and delta deltaG4 > 0 for metals M with vacant valence d orbitals, whereas delta deltaG1 > 0 and delta deltaG4 < 0 for metals M' with fully occupied valence d orbitals. Thus, a simple thermodynamic rule for the design of bimetallic catalysts for the ORR is proposed: couple a metal M (delta deltaG1 < 0) with a second metal M' (delta deltaG4 < 0) to form an alloy catalyst MM'3. The rationale behind this selection is based on M being more efficient for the rate-determining step, i.e., for the formation of the adsorbed species M-OOH, while M' can enhance the reductions of O and OH in the last three electron-transfer steps.  相似文献   

13.
芦天亮  杜中田  刘俊霞  陈晨  徐杰 《催化学报》2014,(12):1911-1916
脂肪伯醇催化转化制备相应的醛是具有挑战性的课题,目前多采用负载的单金属铜基催化剂.本文报道了双金属催化剂Cu-Ni/γ-Al2O3催化3,3-二甲基-1-丁醇脱氢制备相应的醛,在相同反应条件下,Cu-Ni/γ-Al2O3比单金属催化剂Cu/γ-Al2O表现出更高的催化活性,能将一系列脂肪伯醇高选择性转化为相应的醛.  相似文献   

14.
《中国化学快报》2023,34(1):107146
Bimetallic catalysts usually exhibit better performance than monometallic catalysts due to synergistic effect. However, there is a lack of exploring the synergistic effect on catalytic performance caused by the introduction of inactive metal ion. In this work, we design a molecular model system that can precisely regulate the metal site number and catalytic property. When these molecular metal compounds are used as homogeneous catalysts for photocatalytic CO2 reduction, the dinuclear heterometallic CuNi-L2 shows the highest CO2-to-CO conversion, which is 2.1 and 3.0 times higher than that of dinuclear homometallic Ni2-L2 and mononuclear Ni-L1. Density functional theory calculations demonstrate that, in CuNi-L2, the introduction of inactive CuII is easier to promote the photo-generated electrons transferring to the coupled active NiII site to achieve the highest activity. In addition, this work also provides insights to design and construct more efficient bimetallic catalysts in future.  相似文献   

15.
Monometallic and bimetallic catalysts based on palladium and copper deposited on a spinel carrier have been investigated in the catalytic combustion of methane. Great differences were found in catalytic activity, according to the sequence Pd/MgAl2O4>CuO–Pd/MgAl2O4>Pd–CuO/MgAl2O4>CuO/MgAl2O4. They were explained by changes in surface composition of the catalysts. In the case of bimetallic catalysts the metallic surface is preferentially enriched in copper, which acts as a diluting agent for the Pd atom ensembles. As a consequence, the adsorption of reactants is limited and the catalysts so obtained behave like copper slightly doped with palladium.  相似文献   

16.
Dry reforming of methane(DRM) involves the conversion of carbon dioxide(CO2) and methane(CH4) into syngas(a mixture of hydrogen, H2, and carbon monoxide, CO), which can then be used to produce a wide range of products by means of Fischer–Tropsch synthesis. DRM has gained much attention as a means of mitigating damage from anthropogenic greenhouse gas(GHGs) emissions to the environment and instead utilizing these gases as precursors for value-added chemicals or to...  相似文献   

17.
The synthesis, characterization and catalytic properties of new materials obtained by reaction of organometallic complexes of groups IIb, IVa, and VIa with the surface of metallic particles are reviewed. Two types of materials may be obtained by surface organometallic chemistry on metals: metal particles covered with organometallic fragments, and bimetallic particles of predetermined composition. Characterization of the organometallic fragments on the metal particles has demonstrated their thermal stability. These particles covered with surface organometallic fragments are new catalytic materials, highly selective in several reactions such as the hydrogenation of α,β-unsaturated aldehydes, ethyl pyruvate, nitrobenzene, acrylonitrile, and olefins. The bimetallic particles without organometallic fragments are also highly active and selective for a variety of reactions such as hydrogenolysis of various alkanes and hydrogenolysis of esters. For these systems, the concept of “site isolation” has been advanced to account for the high selectivity of the reactions.  相似文献   

18.
19.
Bimetallic catalysts, PdCl2-MXn and PdCl2(PhCN)2-Mxn (MXn=FeCl3, Fe(acac)3, Co(OAc)2, CoCl2, Co(acac)2, NiCl2, Ni(OAc)2, RuCl3, Cu(OAc)2, CuCl2), exhibit remarkable synergic effect which can obviously increase the activity of the monometallic Pd catalyst for the hydrogenation of nitroaromatics, whereas MXn alone is not catalytically active under the same reaction conditions.  相似文献   

20.
The hydrogenolysis of dimethyl disulfide in the presence of Ni,Mo and Co,Mo bimetallic sulfide catalysts was studied at atmospheric pressure and T = 160–400°C. At T ≤ 200°C, dimethyl disulfide undergoes hydrogenolysis at the S-S bond, yielding methanethiol in 95–100% yield. The selectivity of the reaction decreases with increasing residence time and temperature due to methanethiol undergoing condensation to dimethyl disulfide and hydrogenolysis at the C-S bond to yield methane and hydrogen sulfide. The specific activity of the Co,Mo/Al2O3 catalyst in hydrogenolysis at the S-S and C-S bonds is equal to or lower than the total activity of the monometallic catalysts. The Ni,Mo/Al2O3 catalyst is twice as active as the Ni/Al2O3 + Mo/Al2O3 or the cobalt-molybdenum bimetallic catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号