首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Effect of side-chain substitutions on the morphology of self-assembly of perylene diimide molecules has been studied with two derivatives modified with distinctly different side-chains, N,N'-di(dodecyl)-perylene-3,4,9,10-tetracarboxylic diimide (DD-PTCDI) and N,N'-di(nonyldecyl)-perylene-3,4,9,10-tetracarboxylic diimide (ND-PTCDI). Due to the different side-chain interference, the self-assembly of the two molecules results in totally different morphologies in aggregate: one-dimensional (1D) nanobelt vs zero-dimensional (0D) nanoparticle. The size, shape, and topography of the self-assemblies were extensively characterized by a variety of microscopies including SEM, TEM, AFM, and fluorescence microscopy. The distinct morphologies of self-assembly have been obtained from both the solution-based processing and surface-supported solvent-vapor annealing. The nanobelts of DD-PTCDI fabricated in solution can feasibly be transferred to both polar (e.g., glass) and nonpolar (e.g., carbon) surfaces, implying the high stability of the molecular assembly (due to the strong pi-pi stacking). The side-chain-dependent molecular interaction was comparatively investigated using various spectrometries including UV-vis absorption, fluorescence, X-ray diffraction, and differential scanning calorimetry. Compared to the emission of ND-PTCDI aggregate, the emission of DD-PTCDI aggregate was significantly red-shifted (ca. 30 nm) and the emission quantum yield decreased about three times, primarily due to the more favorable molecular stacking for DD-PTCID. Moreover, the aggregate of DD-PTCDI shows a pronounced absorption band at the longer wavelength, whereas the absorption of ND-PTCDI aggregate is not significant in the same wavelength region. These optical spectral observations are reminiscent of the previous theoretical investigation on the side-chain-modulated electronic properties of PTCDI assembly.  相似文献   

2.
An amphiphilic electron-deficient (n-type) perylene diimide has been synthesized and characterized. The diimide contains a hydrophobic long chain on one end and a hydrophilic ethoxy chain on the other. The self-assembly of this molecule in polar and nonpolar solvents has been demonstrated by concentration- and temperature-dependent absorption and fluorescence spectroscopies. Analysis of the spectral change for the aggregates shows typical J-aggregates for structures precipitated from polar solvents and H-aggregates for structures precipitated from nonpolar solvents. SEM and TEM micrographs and a suggested packing scheme, compatible with the formation of nanostrips in nonpolar solvents and nanofibers in polar solvents, are presented.  相似文献   

3.
Three perylene-3,4;9,10-tetracarboxydiimide (PTCDI) compounds with two dodecyloxy or thiododecyl chains attached at the bay positions of the perylene ring, PTCDIs 1-3, were fabricated into nanoassemblies by a solution injection method. The morphologies of these self-assembled nanostructures were determined by transmission electronic microscopy (TEM), scanning electronic microscopy (SEM), and atomic force microscopy (AFM). PTCDI compound 1, with two dodecyloxy groups, forms long, flexible nanowires with an aspect ratio of over 200, while analogue 3, with two thiododecyl groups, self-assembles into spherical particles. In line with these results, PTCDI 2, with one dodecyloxy group and one thiododecyl group, forms nanorods with an aspect ratio of around 20. Electronic absorption and fluorescence spectroscopy results reveal the formation of H-aggregates in the nanostructures of these PTCDI compounds owing to the pi-pi interaction between the substituted perylene molecules and also suggest a decreasing pi-pi interaction in the order 1>2>3, which corresponds well with the morphology of the corresponding nanoassemblies. On the basis of DFT calculations, the effect of different substituents at the bay positions of the perylene ring on the pi-pi interaction between substituted perylene molecules and the morphology of self-assembled nanostructures is rationalized by the differing degree of twisting of the conjugated perylene system caused by the different substituents and the different bending of the alkoxy and thioalkyl groups with respect to the plane of the naphthalene.  相似文献   

4.
The Binding of nonylphenol to respective antibodies immobilized on solid substrates was studied with the methods of total internal reflection ellipsometry (TIRE) and QCM (quartz crystal microbalance) impedance spectroscopy. The binding reaction was proved to be highly specific having an association constant of KA=1.6x10(6) mol(-1) L and resulted in an increase in both the adsorbed layer thickness of 23 nm and the added mass of 18.3 microg/cm2 at saturation. The obtained responses of both TIRE and QCM methods are substantially higher than anticipated for the immune binding of single molecules of nonylphenol. The mechanism of binding of large aggregates of nonylphenol was suggested instead. Modeling of the micelle of amphiphilic nonylphenol molecules in aqueous solutions yielded a micelle size of about 38 nm. The mechanism of binding of large molecular aggregates to respective antibodies can be extended to other hydrophobic low-molecular-weight toxins such as T-2 mycotoxin. The formation of large molecular aggregates of nonylphenol and T-2 mycotoxin molecules on the surface was proved by the AFM study.  相似文献   

5.
Li Y  Tan L  Wang Z  Qian H  Shi Y  Hu W 《Organic letters》2008,10(4):529-532
A series of core-perfluoroalkylated perylene bisimides (PBIs) have been efficiently synthesized by copper-mediated perfluoroalkylation of dibrominated PBIs. Their aromatic cores are highly twisted due to the steric encumbrance in the bay regions as revealed by single-crystal X-ray analysis. The organic field-effect transistors (OFETs) incorporating these new n-type semiconductors show remarkable air-stability and good field effect mobility.  相似文献   

6.
This review summarizes the recent progress of perylene diimide (PDI) derivatives used as the acceptor materials in non-fullerene organic solar cells. The resulting structure-property correlations and design strategies of this type of acceptors are discussed and commented, which will help to constructing high-performance PDI-based acceptor materials in the future. The problems at present and the effort direction are also pointed out in this review.  相似文献   

7.
A new amphiphilic receptor containing a macrocyclic anionic headgroup and a single alkyl chain was prepared through an efficient templated synthesis. The interdependence of the aggregation behavior and the host-guest chemistry was studied. In the absence of any guest the terminus of the alkyl chain of the receptor is included inside the hydrophobic cavity of the macrocycle (as evident from 1H NMR studies) leading to self-assembly into micrometer-long nanotubes (as evident from TEM studies). The alkyl chain can be displaced by an acridizinium bromide guest (as evident from 1H NMR and ITC), which leads to a dramatic change in aggregate size and morphology (as evident from DLS). Studies of the solubilization of Nile red suggest that the resulting aggregates are micelles with a cmc of around 35 microM. These results represent a new addition to the still small number of water-soluble amphiphilic receptors and one of the first examples in which specific host-guest chemistry controls the size and shape of nanoscale aggregates.  相似文献   

8.
The interfacial and aggregation behavior of the ABC-type amphiphilic molecules with semirigid dumbbell-shaped core and variable length of hydrophobic branched tails (R=(CH2)nCH3 with n=5 (1), 9 (2), 13 (3)) were investigated. At low surface pressure, smooth, uniform monolayers were formed at the air-water interface by molecules 1 and 2, whereas for molecule 3 unique 2D toroid aggregates have been formed. These aggregates were relatively stable within a range of surface pressure and spreading solution concentration. Upon compression, the 2D toroid aggregates collapsed into large, round 3D aggregates. Finally, the choice of spreading solvent has a great influence on aggregation formation into 2D or 3D micelles as a result of the variable balance of the hydrophobic interactions of branched tails and the pi-pi stacking interaction between aromatic segments.  相似文献   

9.
10.
A new perylene diimide (PDI) ligand (1) functionalized with a Zn2+–dipicolylethylenediamine (Zn2+–DPEN) moiety was synthesized and first used as a fluorometric chemosensor to specifically detect the presence of ATP over other phosphate anions in aqueous solution. The solution of 1 upon addition of ATP displayed a remarkable absorption decrease compared with other anions, indicating the selectivity of 1 to ATP. Moreover, among these anions investigated, only ATP showed a considerable enhancement of fluorescent intensity of 1. The fluorescence molar ratio plot combined with the ESI-TOF mass measurement determined that binding stoichiometry between 1 and ATP is 1:1.  相似文献   

11.
Recent developments of bottom-up fabrication based on self-assembly processes allow us to construct well-designed nano- and microstrctures such as spheres, fibers, tubes, and disks from various functional molecules including biopolymers, conjugated molecules, porphyrins, graphenes, and fullerenes. These assembling techniques do not always require traditional (hydrophilic/hydrophilic) amphiphilic structure. A wide range of functional molecules can be now applied for the fabrication of desired microstructures.  相似文献   

12.
Amphiphilic diblock codendrimers consisting of dendrons of hydroxyl-containing poly(methallyl dichloride) (PMDC) and long alkyl-containing poly(urethane amide) (PUA) were synthesized in different generations. These codendrimers were found to self-assemble into ribbonlike aggregates in organic solvent and further formed three-dimensional networks and behaved macroscopically as gels. The width of the self-assembled ribbons decreases with the generation of both dendritic blocks. Multiple intermolecular hydrogen bonds between amide and hydroxyl groups were found to be the main driving force to form these self-assembled gels.  相似文献   

13.
The high potential of self-assembly processes of molecular building blocks is reflected in the vast variety of different functional nanostructures reported in the literature. The constituting units must fulfill several requirements like synthetic accessibility, presence of functional groups for appropriate intermolecular interactions and depending on the type of self-assembly processsignificant chemical and thermal stability. It is shown that oligopyridines are versatile building blocks for two- and three-dimensional (2D and 3D) self-assembly. They can be employed for building up different architectures like gridlike metal complexes in solution. By the appropriate tailoring of the heterocycles, further metal coordinating and/or hydrogen bonding capabilities to the heteroaromatic molecules can be added. Thus, the above-mentioned architectures can be extended in one-step processes to larger entities, or in a hierarchical fashion to infinite assemblies in the solid state, respectively. Besides the organizational properties of small molecules in solution, 2D assemblies on surfaces offer certain advantages over 3D arrays. By precise tailoring of the molecular structures, the intermolecular interactions can be fine-tuned expressed by a large variety of resulting 2D patterns. Oligopyridines prove to be ideal candidates for 2D assemblies on graphite and metal sufaces, respectively, expressing highly ordered structures. A slight structural variation in the periphery of the molecules leads to strongly changed 2D packing motifs based on weak hydrogen bonding interactions. Such 2D assemblies can be exploited for building up host-guest networks which are attractive candidates for manipulation experiments on the single-molecule level. Thus, "erasing" and "writing" processes by the scanning tunneling microscopy (STM) tip at the liquid/solid interface are shown. The 2D networks are also employed for performing coordination chemistry experiments at surfaces.  相似文献   

14.
15.
16.
A new perylene diimide (PDI) ligand (1) functionalized with a dipicolylethylenediamine (DPEN) moiety was synthesized and first used as a colorimetric and fluorometric dual-channel sensor to specifically detect the presence of Cu2+ over a wide range of other cations. The solution of 1 (10 μmol/L) upon ad-dition of Cu2+ displayed distinguishing pink color compared with other cations including K+,Ni2+,Ca2+,Mn2+,Na+,Sr2+,Zn2+,Co2+,Cd2+,Mg2+,Cr3+,Ag+,and Ba2+,indicating the sensitivity and selectivity of 1 to Cu...  相似文献   

17.
Stimuli-responsive nanocarriers offer favorable properties for the target-specific delivery of drugs. Herein, we employed photoirradiation as an external stimulus for the construction of a molecular system that encapsulated small molecules, which were released upon photoirradiation. These nanocarriers consisted of DNA amphiphiles (ODAz 1), in which an oligodeoxynucleotide and an alkyl chain were employed as the hydrophilic and hydrophobic parts, respectively, and these two parts were linked by a photochromic azobenzene unit. In aqueous solutions, ODAz 1 formed nanosized aggregates that encapsulated hydrophobic molecules in their hydrophobic core. Photoirradiation induced isomerization of the azobenzene unit led to changes in aggregate size and the immediate release of the molecules. The aggregate smoothly penetrated the cell membrane, and the photochemical release and delivery of small molecules into living cells were achieved. Thus, ODAz 1 aggregates represent promising photosensitive nanocarriers that may be applicable to drug delivery and targeting.  相似文献   

18.
We revisit the problem of amphiphilic aggregation using a simple two-state (monomer-aggregate) thermodynamic model, which allows the study of metastable aggregates of variable size. A sequence of well separated concentrations emerge: c(1), where a metastable aggregated state appears; c(2), above which an appreciable amount of metastable aggregates forms; and c(3), where the aggregated state becomes stable. Of these, c(3) is shown to correspond to the critical micelle concentration (cmc) as commonly measured in macroscopic experiments. Thus, appreciable premicellar aggregation is predicted in the concentration range between c(2) and c(3). We show that, so long as the micelles are not too large, the extent of premicellar aggregation is much larger than that expected from mere finite-size effects. It stems from the variability of the micelle size and the small free energy difference between the metastable state, containing monomers and aggregates, and the pure monomeric one. The aggregate size is found to weakly change with concentration below and above the cmc. The existence of premicellar aggregates and their concentration-insensitive size are in agreement with a recent experiment.  相似文献   

19.
In this study, we present a way of controlling the formation of the two types of zeaxanthin aggregates in hydrated ethanol: J-zeaxanthin (head-to-tail aggregate, characteristic absorption band at 530 nm) and H-zeaxanthin (card-pack aggregate, characteristic absorption band at 400 nm). To control whether J- or H- zeaxanthin is formed, three parameters are important: (1) pH, that is, the ability to form a hydrogen bond; (2) the initial concentration of zeaxanthin, that is, the distance between zeaxanthin molecules; and (3) the ratio of ethanol/water. To create H-aggregates, the ability to form hydrogen bonds is crucial, while J-aggregates are preferentially formed when hydrogen-bond formation is prevented. Further, the formation of J-aggregates requires a high initial zeaxanthin concentration and a high ethanol/water ratio, while H-aggregates are formed under the opposite conditions. Time-resolved experiments revealed that excitation of the 530-nm band of J-zeaxanthin produces a different relaxation pattern than excitation at 485 and 400 nm, showing that the 530-nm band is not a vibrational band of the S2 state but a separate excited state formed by J-type aggregation. The excited-state dynamics of zeaxanthin aggregates are affected by annihilation that occurs in both J- and H-aggregates. In H-aggregates, the dominant annihilation component is on the subpicosecond time scale, while the main annihilation component for the J-aggregate is 5 ps. The S(1) lifetimes of aggregates are longer than in solution, yielding 20 and 30 ps for H- and J-zeaxanthin, respectively. In addition, H-type aggregation promotes a new relaxation channel that forms the zeaxanthin triplet state.  相似文献   

20.
A new n-type semiconducting perylene bisimide dye has been synthesized that gelates a broad variety of organic solvents to afford well-defined nano- and mesoscopic helical fibers and bundles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号