首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A series of modified ferrites were prepared by doping iron oxide with various transition/non-transition/inner-transition metal ions [M = Cr, Mn, Co, Ni, Cu, Zn and Ce] in situ during synthesis. All the modified ferrites thus obtained exhibit remarkably high surface areas, greater than that of pure iron oxide (Fe2O3) sample. The efficacy of the dopant ions in modifying the resultant specific surface area, could be directly related to variations in the rate of crystal growth. The nature and concentration of the foreign cations present in the system govern this variation. Interestingly all the modified ferrites, exhibit a narrow pore size distribution in the range of 4.9–25 nm. XRD analysis revealed the existence of hematite (Fe2O3) phase in all the as-prepared samples. The X-ray diffraction experiments performed on activated catalysts, confirmed the existence of magnetite (Fe3O4) phase with a nominal composition of Fe2.73M0.27O4. These inverse or mixed spinels with general formula A(1−δ)Bδ[AδB(2−δ)]O4, possess highly facile Fe3+  Fe2+ redox couple, the degree of facileness depends on the extent of synergistic interaction between iron and the other substitutent metal ion. The rapid electron hopping between Fe3+  Fe2+ in the Fe3O4 lattice system is essential to catalyze WGS reaction. From TPR it was observed that, incorporation of metal cations into the hematite (-Fe2O3) crystal structure alters the reducibility of the hematite particles, which in turn depends on the nature of the incorporated metal cation. A plausible explanation for the WGS activity over various modified ferrites has been attempted with the help of TPR analysis.  相似文献   

2.
改性二氧化钛负载贵金属Ru催化剂催化降解苯胺溶液   总被引:2,自引:0,他引:2  
苯胺类废水污染物具有结构复杂、浓度高、不易生物降解、生物毒性大等特点,传统的苯胺降解措施存在着许多弊端,很难达到排放标准.催化湿法氧化技术(CWAO)主要针对降解高浓度难降解的有机废水,表现出降解效率高、反应时间短、对生物毒性物质的废水降解效果良好等优点,越来越受到人们的重视.但催化剂在使用过程中,需要在高温高压下进行,且有机物降解产生了有机酸,使得催化剂的活性组分流失和载体的物理化学性质发生变化,导致其催化活性下降.因此,需要开发出一种降解活性高,性能稳定的催化剂成为此技术在工业中广泛应用的关键.本文采用溶胶凝胶法对二氧化钛进行改性,制备了Ti0.9Zr0.1O2和Ti0.9Ce0.1O2载体,采用过量浸渍法将三氯化钌负载到载体表面制备了2%Ru/Ti0.9Zr0.1O2和2%Ru/Ti0.9Ce0.1O2催化剂.在高温高压反应条件下,以苯胺为催化湿法氧化污染物,对不同催化剂湿法降解苯胺进行比较研究,系统地探究了催化降解的反应温度和反应压力对苯胺降解的影响.此外,利用HPLC-MS鉴定出催化降解产生的中间产物,确定了催化降解的反应路径图.在改性的催化剂中,2%Ru/Ti0.9Zr0.1O2催化剂表现出最高的催化降解活性和稳定性.在初始苯胺浓度4 g/L,催化剂浓度4 g/L,反应温度180℃,O2压力1.5 MPa下,反应时间5 h后,苯胺完全转化,COD转化率达88.3%.并且催化剂进行三次循环试验后,苯胺转化率仍接近100%.X射线衍射和N2物理吸附结果表明,Ce,Zr掺杂到TiO2晶格中形成了共溶体,其晶格尺寸更小,比表面积和孔体积更大.负载贵金属后,并未出现其他晶相,说明贵金属均匀分散在载体表面.透射电镜结果表明,贵金属负载在改性TiO2上表现出较好的分散性和较小的颗粒尺寸,为催化降解苯胺提供更多的催化活性位点,而Ru/TiO2催化剂表面,贵金属发生团聚现象且颗粒尺寸大.X射线光电子能谱结果表明,Ce,Zr的掺杂使得TiO2表面活性氧和四价Ru的含量增加,更多的表面活性氧成为催化降解苯胺的直接原因.H2程序升温还原结果表明,在300?400oC处还原峰对应于催化剂载体晶格氧的还原,改性后,其还原峰增至2倍,即使在贫氧环境下,改性催化剂可以及时从载体中释放晶格氧,为催化降解苯胺提供更多的活性氧.  相似文献   

3.
王翔  李美俊  吴自力 《催化学报》2021,42(12):2122-2140
二氧化铈作为催化剂、催化剂载体和助剂被广泛应用于各类氧化还原的催化反应中,是多相催化领域中至关重要的金属氧化物.氧化铈因具有丰富的缺陷结构、较强的氧化还原能力以及异常的酸碱功能等独特性质,在催化领域中非常重要.在分子层面上理解氧化铈的储氧能力、氧化还原效应和酸碱性质对建立催化构效关系尤为重要,是有效合理地改善和设计铈基催化材料的关键.在诸多的表征手段中,光谱在氧化铈结构和表面性质的研究中显示出无可争议的优势,可以提供原子和分子层面的化学信息.本文总结了各种光谱方法(包括光学、X射线、中子、电子和核磁谱学)对氧化铈表面性质表征的研究进展.分析了直接光谱表征及其与探针分子耦合两种方法在氧化铈表征中的应用;归纳了预处理条件、氧化铈纳米粒子的形貌和尺寸对其表面位点的性质、强度和密度的影响.最后展望了如何利用反应条件下的原位光谱来更好地理解和揭示铈基材料的催化作用机制的可能性.  相似文献   

4.
Zhang  Bo  Pan  Zhanchang  Yu  Ke  Feng  Guangwen  Xiao  Jun  Wu  Shoukun  Li  Jinghong  Chen  Chun  Lin  Yingsheng  Hu  Guanghui  Wei  Zhigang 《Journal of Solid State Electrochemistry》2017,21(10):3065-3070
Journal of Solid State Electrochemistry - In the present study, Pt nanoparticles (20 wt%) were successfully anchored on vanadium (V)-doped titanium nitride hybrid support, which...  相似文献   

5.
TiO(2)-ZrO(2) (hereafter denoted as Ti-Zr) supported V(2)O(5) catalysts with different loadings of CeO(2) were synthesized, and their physicochemical properties were characterized by Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), in situ Fourier transform infrared spectroscopy (in situ FT-IR) and temperature-programmed reduction (TPR). Their catalytic activities toward the NO(x) reduction reaction with NH(3) were tested. We found that with the addition of CeO(2), more NO was removed in a wide temperature range of 220-500 °C. As the CeO(2) content was increased from 10% to 20% (i.e., the molar ratio of Ce to Ti-Zr), NO conversion increased significantly; after that, increasing CeO(2) content, however, decreased NO conversion. In particular, the addition of CeO(2) to V(2)O(5)/Ti-Zr suppressed the coke deposition and rendered a stable and high catalytic activity. The characterization results indicated that: (1) the deposited vanadium and cerium oxides were highly dispersed over the Ti-Zr support, and in addition to ZrV(2)O(7), a common binary compound observed in V(2)O(5)/Ti-Zr, CeVO(4) and Ce(3)ZrO(8) was formed upon increasing CeO(2) content; (2) the introduction of CeO(2) to V(2)O(5)/Ti-Zr sample promoted the redox ability of the resulting catalysts; and (3) the Ce-containing catalysts possessed the greater amount of surface acidic and active intermediate.  相似文献   

6.
New information about the active sites for the water gas shift (WGS) reaction over Cu-CeO2 systems was obtained using in-situ, time-resolved X-ray diffraction (TR-XRD), X-ray absorption spectroscopy (TR-XAS, Cu K and Ce L3 edges), and infrared spectroscopy (DRIFTS). Cu-CeO2 nanoparticles prepared by a novel reversed microemulsion method (doped Ce1-xCuxO2 sample) and an impregnation method (impregnated CuOx/CeO2 sample) were studied. The results from all of the samples indicate that both metallic copper and oxygen vacancies in ceria were involved in the generation of active sites for the WGS reaction. Evidence was found for a synergistic Cu-Ovacancy interaction. This interaction enhances the chemical activity of Cu, and the presence of Cu facilitates the formation of O vacancies in ceria under reaction conditions. Water dissociation occurred on the Ovacancy sites or the Cu-Ovacancy interface. No significant amounts of formate were formed on the catalysts during the WGS reaction. The presence of strongly bound carbonates is an important factor for the deactivation of the catalysts at high temperatures. This work identifies for the first time the active sites for the WGS reaction on Cu-CeO2 catalysts and illustrates the importance of in situ structural studies for heterogeneous catalytic reactions.  相似文献   

7.
Comparative results (specific area, metallic dispersion, and activity in the carbon monoxide oxidation) on sol-gel and impregnated Pt/TiO2 catalysts are presented. In order to explain the important differences between the two preparations, among them high resistivity of sol-gel catalyst to sintering, the formation of anchored and/or partially buried particles into the support is proposed.  相似文献   

8.
Photodecomposition of NO on the well-dispersed Pt/TiO2 catalyst under UV irradiation was studied by in situ DRIFT (Diffuse-Reflectance Infrared Fourier-Transform) spectroscopy. 2 wt% Pt/TiO2 catalyst was prepared by photochemical deposition method. The photocatalytic activity of Pt/TiO2 is highly dependent on its pretreatment. Although the catalyst exhibited a highly adsorption capability to NO after hydrogen reduction or thermal evacuation at 500°C, no evidence upon NO decomposition was observed under UV irradiation. While reducing the catalyst at 300°C in the hydrogen flow, it not only exhibited an intense NO adsorption but also conducted a direct decomposition of NO to N2 and O2 under UV irradiation. The hydrogen reduction at 200°C led to a weaker NO adsorption. During UV irradiation, the IR peaks of NO fully disappeared and N2O was formed. It is concluded that the photochemical prepared Pt/TiO2 catalyst after activating at mild reduction conditions is highly active for NO photodecomposition. The effective oxidation states of the active components, the surface structure and the reaction mechanisms will be discussed.  相似文献   

9.
Metallic platinum was photodeposited on TiO2 particles, and morphological characteristics of the Pt/TiO2 catalyst were determined. The dispersion of metallic platinum was uniform and did not alter the morphology of the TiO2 particles. However, absorbance of the Pt/TiO2 catalyst for light with wavelength more than 400 nm was significantly improved by the addition of metallic platinum. Gaseous acetone was decomposed in an annular photoreactor coated with TiO2 or Pt/TiO2 catalysts using a UV or a fluorescent lamp as light source. The decomposition of acetone with the application of a UV lamp was obviously enhanced for experiments conducted with Pt/TiO2 catalyst. Decomposition of acetone was promoted considerably with increasing oxygen concentration for experiments conducted with oxygen less than 50,000 ppmv, yet the decomposition of acetone was kept relatively constant for experiments conducted with oxygen above 50,000 ppmv. On the basis of the mass balance for carbon species, the amount of organic intermediates formed for experiments conducted under various conditions was found to be minimal. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 209–216, 2008  相似文献   

10.
In situ diffuse reflectance FT-IR measurements were carried out to investigate the formation and decomposition behavior of by-product compounds on TiO2 and Pt/TiO2 catalyst surfaces during the photo-oxidation of benzene and ethylene. In the benzene photo-oxidation ([benzene]=100 ppm) without water vapor, TiO2 catalyst was readily covered with oxygen-containing by-product compounds, which were decomposed by photoirradiation in the presence of water vapor ([H2O]=0.17%) with an induction period. Pt deposition slightly increased the rate for their decomposition. In the ethylene photo-oxidation ([ethylene]=400 ppm) without water vapor, oxygen-containing by-product compounds were also formed, which were readily decomposed by photoirradiation in the presence of water vapor without induction period. Pt deposition on TiO2 surface had no significant effect on the photo-oxidation processes.  相似文献   

11.
The oxide-based supported catalysts with high specific surface area (>200 m(2)/g) were produced in one step through combination of the impregnation and solution combustion synthesis approaches. As a model system, iron oxide was selected, which was loaded on different porous supports including alpha-Al(2)O(3), gamma-Al(2)O(3), and ZrO(2), as well as activated alumina. It was shown that for the former three cases the specific surface areas of the supported catalysts are about or below the surface areas of the support. However, for the activated Al(2)O(3) this characteristic significantly increases compared to that of the support. It was demonstrated that the developed approach may be used to produce different types of oxide-based supported catalysts, including perovskites.  相似文献   

12.
13.
A series of copper catalysts supported on TiO2-ZrO2 with copper loading varying from 1.0 to 21.6 wt % were prepared by a wet impregnation method. The catalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy, electron spin resonance (ESR), temperature programmed reduction (TPR), and Brunauer-Emmett-Teller specific surface area measurements. Copper dispersion and metal area were determined by N2O decomposition by the passivation method. XRD results suggest that the copper oxide is present in a highly dispersed amorphous state at copper loadings <16.8 wt % in the sample and as a crystalline CuO phase at higher Cu loadings. Copper dispersion increases with Cu loading up to 5.1 wt % and levels off at higher loadings. The XPS peak intensity ratios of Cu 2p(3/2)/Ti 2p(3/2) and Cu 2p(3/2)/Zr 3d(5/2) were compared with the copper dispersion calculated from N2O decomposition. ESR results suggest the presence of two types of copper species on the TiO2-ZrO2 support. TPR profiles reveal the presence of highly dispersed copper oxide at lower temperatures and bulk CuO at higher temperatures. The catalytic properties were evaluated for the vapor-phase dehydrogenation of cyclohexanol to cyclohexanone and related to the dispersion of Cu on TiO2-ZrO2.  相似文献   

14.
The exchange reaction of methane and deuterium was studied over a series of silica-supported Pt–Ru bimetallic catalysts, whose surface composition was determined by means of O2–CO titration. The stepwise exchange, giving CH3D as the main product, proceeded on each surface Pt atom. The multiple exchange, which formed CD4 directly, proceeded on an ensemble of several Ru atoms.
Pt–Ru, SiO2, O2–CO . , CH3D , Pt. , CD4, Ru.
  相似文献   

15.
Károly Lázár 《Structural chemistry》1991,2(3-4):(37)245-(57)265
A large amount of information can be obtained by in situ Mössbauer spectroscopy in the study of supported catalysts. Important details of structural transformations, reduction, and stabilization processes can be revealed. In the present overview versatile applications of the method are demonstrated. Studies of bulk systems, decomposition of catalyst precursors, and stability of framework-substituted zeolites are discussed. Changes taking place in the coordination state of surface ions on silica and inside the cages of X zeolite are revealed. The process of reduction is studied in formation of iron carbide and the influence of the choice of the support on the reduction of tin is illustrated. Formation and stabilization of bimetallic particles are also discussed in the report.  相似文献   

16.
Carbon nanostructures were synthesized by the pyrolysis of an CH4-H2 mixture. The synthesis was carried out on the Fe-Mo catalysts supported on the SiO2 surface by high-frequency diode sputtering or chemical deposition from a solution of a heterometallic carbonylchalcogenide complex. Structure features of the formed carbon nanostructures affected by the size of catalytic particles, temperature of the process, and composition of the gas mixture were revealed. The presence of sulfur in the catalyst composition results in the formation of nanofibers with the bamboo-like structure. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1372–1376, August, 2006.  相似文献   

17.
Cobalt-manganese nano catalysts were prepared by sol-gel method. This research investigated the effects of different cobalt-manganese (Co/Mn = 1/1) loading, pH and calcination conditions on the catalytic performance of Co-Mn/TiO2 catalysts for Fischer-Tropsch synthesis (FTS) in a fixed bed reactor. It was found that the catalyst containing 30wt%(Co-Mn)/TiO2 was an optimal catalyst for the conversion of synthesis gas to light olefins especially propylene. The activity and selectivity of optimal catalyst were studied under different operational conditions. The results showed that the best operational conditions were H2/CO= 1/1 molar feed ratio at 250 °C and GHSV= 1300 h?1 under atmospheric pressure. Characterization of catalysts was carried out by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption-desorption measurements.  相似文献   

18.
Catalysts based on Pt and Rh modified with Sn(C4H9)4 were studied in the hydrogenation of 4-methoxyacetophenone. The selectivity to 1-(4-methoxyphenyl)ethanol was close to 100% at Sn/(Pt,Rh) = 1.0, however the catalytic activity decreased drastically. With respect to the balance between activity and selectivity the catalyst PtSnOM (Sn/Pt=0.4) showed the best performance.  相似文献   

19.
Au/zeolite catalysts prepared with a deposition-precipitation method were characterized with quick XAFS (QXAFS) in combination with IR. The data were correlated with the catalytic performance in the CO-O(2) reaction conducted at 273 K. On the basis of the XANES analysis of Au loaded on H-Y, the deposited Au(2)O(3) was observed at the initial stage. The transformation of Au(2)O(3) to form metal Au clusters was observed at 473 K in a H(2) atmosphere. The fact was supported by the IR measurement of adsorbed CO and the subsequent reaction with O(2). Detailed clustering process of Au supported catalysts could be directly followed by EXAFS analysis. The growth of metal Au proceeded via the formation of a Au(55) cluster at 473 K. Then it agglomerated to give metal Au with diameter of 2 nm at 723 K. The addition of H(2) was effective to retard the sintering of Au clusters. A similar phenomenon was observed over Au loaded on USY zeolite. In marked contrast to the H-Y and USY supports, significantly agglomerated Au particles generated on Na-Y zeolite, indicating the importance of the presence of acid sites in keeping the Au clusters with highly dispersed form. The performance of 5 wt % Au loaded on H-Y and USY in the CO-O(2) reaction was remarkably sensitive to the pretreatment temperature and the gas atmosphere. The catalyst pretreated with hydrogen showed a two-spike pattern with respect to the pretreatment temperature. Namely, the optimum activity was observed after the pretreatment at 373 and 723 K, where the temperatures corresponded to the generation of Au(2)O(3) and metal Au clusters with 2 nm diameter as evidenced by QXAFS analysis, respectively. The reason for enhancement of the activity of Au/H-Y by the addition of H(2) in the pretreatment step could be attributed to the formation of metal Au with appropriate size. In contrast to the H-Y and USY support, Au loaded on Na-Y prepared under the same condition was almost inactive in the reaction due to the formation of aggregated metal Au.  相似文献   

20.
Modifying effect of phosphorus on the catalytic activity of supported Pt and Pt–Fe catalysts for CO hydrogenation has been studied. Phosphorus-containing compounds decrease significantly the methane yield with increasing yield of C2–C7 hydrocarbons.
CO Pt- Pt–Fe-. , C2–C7.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号