首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate contact angle hysteresis on chemically patterned and superhydrophobic surfaces, as the drop volume is quasistatically increased and decreased. We consider both two (cylindrical drops) and three (spherical drops) dimensions using analytical and numerical approaches to minimize the free energy of the drop. In two dimensions, we find, in agreement with other authors, a slip, jump, stick motion of the contact line. In three dimensions, this behavior persists, but the position and magnitude of the contact line jumps are sensitive to the details of the surface patterning. In two dimensions, we identify analytically the advancing and receding contact angles on the different surfaces, and we use numerical insights to argue that these provide bounds for the three-dimensional cases. We present explicit simulations to show that a simple average over the disorder is not sufficient to predict the details of the contact angle hysteresis and to support an explanation for the low contact angle hysteresis of suspended drops on superhydrophobic surfaces.  相似文献   

2.
Superhydrophobic surfaces have recently attracted a lot of attention due to their self-cleaning properties. The superhydrophobic surfaces used in our studies were prepared using a mixed inorganic-organic coating. In order to check how short chain surface active agents affect the surface energy of such surfaces, their wettability (sessile drop technique) and the kinetics of the three phase contact formation were studied. It was found that with increasing concentrations of n-hexanol and n-octanol the surface energy of these surfaces was only slightly changed, i.e. a small decrease in contact angle values with increasing solution concentration was detected. Even for the most concentrated n-hexanol and n-octanol solutions, the contact angles were in the range 145-155° and the drop rolled off, indicating that the studied surfaces stayed superhydrophobic. Air bubbles, upon collision with such superhydrophobic surfaces, spread over the superhydrophobic surface within milliseconds in the studied solutions.  相似文献   

3.
Superhydrophobic surfaces of n-hexatriacontane were fabricated in a single-step process. The low surface energy of n-hexatriacontane together with the randomly distributed micro- and nanoscale roughness features guarantees very large contact angles and a small roll-off angle for water drops. The advantage of n-hexatriacontane superhydrophobic surfaces is their stability in the sense that they are impervious to chemical reactions and retain their wetting characteristics over a long period of time, as confirmed by XPS analysis and contact angle measurements.  相似文献   

4.
This study presents a straightforward two-step fabrication process of durable, completely superhydrophobic microchannels in PDMS. First, a composite material of PDMS/PTFE particles is prepared and used to replicate a master microstructure. Superhydrophobic surfaces are formed by subsequent plasma treatment, in which the PDMS is isotropically etched and PTFE particles are excavated. We compare the advancing and receding contact angles of intrinsic PDMS samples and composite PTFE/PDMS samples (1 wt %, 8 wt %, and 15 wt % PTFE particle concentration) and demonstrate that both the horizontal and vertical surfaces are indeed superhydrophobic. The best superhydrophobicity is observed for samples with a PTFE particle concentration of 15 wt %, which have advancing and receding contact angles of 159° ± 4° and 158° ± 3°, respectively.  相似文献   

5.
Superhydrophobic surfaces were prepared from solutions of isotactic polypropylenes of various molecular weights using soft chemistry. Varying the conditions of the experiments (polymer concentration and initial amount of the coated solution) allowed us to optimize the superhydrophobic behavior of the polymer film. Results show that decreasing the concentration and/or film thicknesses decreases the probability to get superhydrophobicity for all polypropylenes tested. Measurement and analysis of advancing and receding contact angles as well as estimation of surface homogeneity were performed. Similar results were obtained with syndio- as well as atactic polypropylenes.  相似文献   

6.
Nanofibers of poly[bis(2,2,2-trifluoroethoxy)phosphazene] were produced by electrospinning from solutions in tetrahydrofuran, methylethyl ketone, and acetone. The fiber diameter varied from 80 nm to 1.4 microm by changes in the concentration of the polymer solution. The electrospun nonwoven mats showed enhanced surface hydrophobicity compared to spun cast films with up to a 55 degrees increase in water contact angle. The hydrophobicity varied with fiber diameter and surface morphology, with contact angles to water being in the range of 135 degrees -159 degrees. A low value of hysteresis (<4 degrees) was recorded for the superhydrophobic surfaces. The extremely high hydrophobicity of these mats is a combined result of a fluorinated surface and the inherent surface roughness of an electrospun mat.  相似文献   

7.
Superhydrophobic surfaces are biomimetic structures with potential applications in several key technological areas. In the past decade, several top-down and bottom-up fabrication methods have been developed to create such surfaces. These typically combine a hierarchical structure and low surface energy coatings to increase the contact angle and decrease the rolling angles. Silicon-based superhydrophobic surfaces are particularly attractive since they can be integrated with active electronics in order to protect them from the detrimental effects of environmental water and moisture. In this work, we introduce a simple and inexpensive process incorporating electrochemical surface modification (to create a fractal shape micro-nano topography) in combination with a final wet etching step to fabricate a superhydrophobic silicon surface with a contact angle of 160 degrees and a sliding angle of less than 1 degree.  相似文献   

8.
Evaporation of sessile water-droplets on superhydrophobic polymer surfaces has been simulated in recent research. Models based on the ellipsoidal cap geometry and spherical cap geometry, which were originally put forward to describe the profile of a droplet during its evaporation process on a solid surface with a contact angle <90±, are developed to reveal the issue with an initial contact angles larger than 150±. To verify the validity of the model, experiments on superhydrophobic polycarbonate, and °uorinated polyurethane and poly (methyl methacrylate) blend surfaces were carried out. It was observed that the change trends of contact angle and height of the droplet against evaporation time on the superhydrophobic surfaces experimentally are consistent with the simulated results by ellipsoidal and spherical cap models. The ellipsoidal cap model shows the better fits due to the shape distortions of droplets.  相似文献   

9.
Superhydrophobic conductive nanocomposite coatings are prepared for the first time from the simple mixture of a commercial aqueous silica sol and functionalized multiwalled carbon nanotubes (MWNTs) by air-spraying at ambient conditions followed by fluorosilane treatment. The relationship between MWNT content and the structure and properties of the nanocomposite coatings is investigated systematically. An ultra-low threshold (<5 vol.%) for superhydrophobicity is observed, which suggests that MWNTs are superior to any other spherical fillers for the construction of superhydrophobic nanocomposite coatings. When the content of nanotubes is below the threshold, the surface roughness mainly caused by the silica nanoparticles is not enough for creating superhydrophobic surfaces. Only above the threshold, the multiscale hierarchical structure is enough for both high water contact angles (>165°) and extremely low sliding angles (<2°). The conductivity is also percolation dominated, while the threshold for conductivity is much higher than that for superhydrophobicity, which can be ascribed to the encapsulated structure and the agglomeration of nanotubes in the composite coatings during air-spraying. Moreover, the aqueous silica sols hold merits of great film-forming capability at relatively low calcination temperatures, and being free of organic solvents.  相似文献   

10.
In this report, surface-hydrophobized cellulose fibers by stearoyl groups were used for the construction of superhydrophobic surfaces. The product after the synthesis contains two components: cellulose microfibers as the major component and nanoscaled segments in small amounts. The crystalline structure of cellulose was maintained after surface modification based on solid-state 13C NMR spectroscopy. Superhydrophobic surfaces showing static water contact angles of >150° were fabricated using freshly prepared products containing both components via the facile route, e.g., solvent casting. The cellulose types, microcrystalline cellulose or cotton linter cellulose fibers, did not significantly affect the chemical modification of cellulose fibers, but the superhydrophobic surfaces using surface-hydrophobized cotton linters as starting materials exhibited higher surface hydrophobicity and better impact stability in comparison to shorter microcrystalline cellulose. Due to the presence of a crystalline cellulose skeleton, the obtained superhydrophobic surfaces are stable during the heat treatment at 80 °C.  相似文献   

11.
Superhydrophobic surfaces, originally inspired by nature, have gained a lot of interest in the past few decades. Superhydrophobicity is a term attributed to the low adhesion of water droplets on a surface, leading to water contact angles higher than 150°. Due to their vast variety of possible applications, ranging from biotechnology and textile industry to power network management and anti-fouling surfaces, many methods have been utilized to develop superhydrophobic surfaces. Among these methods, plasma technology has proved to be a very promising approach. Plasma technology takes advantage of highly reactive plasma species to modify the functionality of various substrates. It is one of the most common surface treatment technologies which is widely being used for surface activation, cleaning, adhesion improvement, anti-corrosion coatings and biomedical coatings. In this paper, recent advances in the applications of plasma technology in the development of superhydrophobic surfaces are discussed. At first, a brief introduction to the concept of superhydrophobicity and plasma is presented, then plasma-based techniques are divided into three main categories and studied as to their applications in development of superhydrophobic surfaces.  相似文献   

12.
Stable superhydrophobic surfaces with water contact angles over 170 degrees and sliding angles below 7 degrees were produced by simply coating a particulate silica sol solution of co-hydrolysed TEOS/fluorinated alkyl silane with NH(3).H(2)O on various substrates, including textile fabrics (e.g. polyester, wool and cotton), electrospun nanofibre mats, filter papers, glass slides, and silicon wafers.  相似文献   

13.
The amazing water repellency of many biological surfaces, exemplified by lotus leaves, has recently received a great deal of interest. These surfaces, called superhydrophobic surfaces, exhibit water contact angles larger than 150 degrees and a low contact angle hysteresis because of both their low surface energy and heterogeneously rough structures. In this paper, we suggest a biomimetic method, "biosilicification", for generating heterogeneously rough structures and fabricating superhydrophobic surfaces. The superhydrophobic surface was prepared by a combination of the formation of heterogeneously rough, nanosphere-like silica structures through biosilicification and the formation of self-assembled monolayers of fluorosilane on the surface. The resulting surface exhibited the water contact angle of 160.1 degrees and the very low water contact angle hysteresis of only 2.3 degrees, which are definite characteristics of superhydrophobic surfaces. The superhydrophobic property of our system probably resulted from the air trapped in the rough surface. The wetting behavior on the surface was in the heterogeneous regime, which was totally supported by Cassie-Baxter equation.  相似文献   

14.
Superhydrophobic surfaces have drawn a lot of interest both in academia and in industry because of the self-cleaning properties. This critical review focuses on the recent progress (within the last three years) in the preparation, theoretical modeling, and applications of superhydrophobic surfaces. The preparation approaches are reviewed according to categorized approaches such as bottom-up, top-down, and combination approaches. The advantages and limitations of each strategy are summarized and compared. Progress in theoretical modeling of surface design and wettability behavior focuses on the transition state of superhydrophobic surfaces and the role of the roughness factor. Finally, the problems/obstacles related to applicability of superhydrophobic surfaces in real life are addressed. This review should be of interest to students and scientists interested specifically in superhydrophobic surfaces but also to scientists and industries focused in material chemistry in general.  相似文献   

15.
利用含氟疏水基团的梯度分布,结合草莓形纳米SiO2粒子提供的双重粗糙表面,制备了具有类"荷叶效应"的超疏水涂膜,水接触角达(174.2±2)°,滞后角几乎接近0°.通过原子力显微镜、扫描电镜和水接触角的测试对膜表面形貌及疏水性能进行了表征;探讨了其表面微观结构与表面疏水性能的关系.草莓形复合粒子在膜表面的无规则排列赋予涂膜表面不同等级的粗糙度,使水滴与涂膜表面接触时能够形成高的空气捕捉率,这种微观结构与疏水基团的梯度分布相结合,赋予了含氟硅丙烯酸酯乳液涂膜表面超疏水性能.  相似文献   

16.
We present calculations of the density distributions and contact angles of liquid droplets on roughened solid surfaces for a lattice gas model solved in a mean-field approximation. For the case of a smooth surface, this approach yields contact angles that are well described by Young's equation. We consider rough surfaces created by placing an ordered array of pillars on a surface, modeling so-called superhydrophobic surfaces, and we have made calculations for a range of pillar heights. The apparent contact angle follows two regimes as the pillar height increases. In the first regime, the liquid penetrates the interpillar volume, and the contact angle increases with pillar height before reaching a constant value. This behavior is similar to that described by the Wenzel equation for contact angles on rough surfaces, although the contact angles are underestimated. In the second regime, the liquid does not penetrate the interpillar volume substantially, and the contact angle is independent of the pillar height. This situation is similar to that envisaged in the Cassie-Baxter equation for contact angles on heterogeneous surfaces, but the contact angles are overestimated by this equation. For larger pillar heights, two states of the droplet can be observed, one Wenzel-like and the other Cassie-like.  相似文献   

17.
Superhydrophobic films were obtained on the basis of sol–gel-derived titania or alumina/dodecylamine hybrid materials. It has been shown that wettability of surfaces of the inorganic oxides changes from superhydrophilic to superhydrophobic. For superhydrophobic materials, the surface roughness of the hybrid films on the basis of titania and alumina is 39 and 55 μm, respectively, and water contact angle is about 150°.  相似文献   

18.
Contact line and contact angle dynamics in superhydrophobic channels   总被引:1,自引:0,他引:1  
The dynamics of the wetting and movement of a three-phase contact line confined between two superhydrophobic surfaces were studied using a mean-field free-energy lattice Boltzmann model. Principle features of superhydrophobic surfaces, such as trapped vapor/air between rough microstructures, high contact angles, reduced contact angle hysteresis, and low resistance to fluid flow, were all observed. Movement of the three-phase contact line over a well-patterned superhydrophobic surface displays a periodic stick-jump-slip behavior, while the dynamic contact angle changes accordingly from maximum to minimum. Two regimes were found for the flow velocity as a function of surface roughness and can be related directly to the balance between driving force and flow resistance. This work provides a better understanding of dynamic wetting and fluid flow behaviors over superhydrophobic surfaces and hence could be useful in related applications.  相似文献   

19.
Superhydrophobic surfaces present properties of self‐cleaning and unwetting that could be applied in the optics field. The wetting and dewetting of these superhydrophobic surfaces are compared to that of only hydrophobic polyethylene. The contact angle of such a surface varies from 170° to 130–140°. The dewetting is studied using two techniques of dynamic dewetting measurements. The behaviors of surfaces, dried or prewetted with water vapor, are different. The dewetting of the dried surface previously prewetted is discontinuous, and slower than that of the dry one. This specific behavior is interpreted as a roughness effect on trapped water. However, its dewetting is still faster than a corresponding hydrophobic surface like polytetrafluoroethylene (PTFE). Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, we demonstrate how condensed moisture droplets wet classical superhydrophobic lotus leaf surfaces and analyze the mechanism that causes the increase of contact angle hysteresis. Superhydrophobic lotus leaves in nature show amazing self-cleaning property with high water contact angle (>150°) and low contact angle hysteresis (usually <10°), causing droplets to roll off at low inclination angles, in accordance with classical Cassie–Baxter wetting state. However, when superhydrophobic lotus leaves are wetted with condensation, the condensed water droplets are sticky and exhibit higher contact angle hysteresis (40–50°). Compared with a fully wetted sessile droplet (classical Wenzel state) on the lotus leaves, the condensed water droplet still has relatively large contact angle (>145°), suggesting that the wetting state deviates from a fully wetted Wenzel state. When the condensed water droplets are subjected to evaporation at room conditions, a thin water film is observed bridging over the micropillar structures of the lotus leaves. This causes the dew to stick to the surface. This result suggests that the condensed moisture does not uniformly wet the superhydrophobic lotus leaf surfaces. Instead, there occurs a mixed wetting state, between classical Cassie–Baxter and Wenzel states that causes a distinct increase of contact angle hysteresis. It is also observed that the mixed Cassie–Baxter/Wenzel state can be restored to the original Cassie–Baxter state by applying ultrasonic vibration which supplies energy to overcome the energy barrier for the wetting transition. In contrast, when the surface is fully wetted (classical Wenzel state), such restoration is not observed with ultrasonic vibration. The results reveal that although the superhydrophobic lotus leaves are susceptible to being wetted by condensing moisture, the configured wetting state is intermediate between the classical Cassie–Baxter and Wenzel states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号