首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
P. Erdös, R.J. Faudree, C.C. Rousseau and R.H. Schelp [P. Erdös, R.J. Faudree, C.C. Rousseau, R.H. Schelp, The size Ramsey number, Period. Math. Hungar. 9 (1978) 145-161] studied the asymptotic behaviour of for certain graphs G,H. In this paper there will be given a lower bound for the diagonal size Ramsey number of Kn,n,n. The result is a generalization of a theorem for Kn,n given by P. Erdös and C.C. Rousseau [P. Erdös, C.C. Rousseau, The size Ramsey numbers of a complete bipartite graph, Discrete Math. 113 (1993) 259-262].Moreover, an open question for bounds for size Ramsey number of each n-regular graph of order n+t for t>n−1 is posed.  相似文献   

3.
The Ramsey number R(G1,G2) of two graphs G1 and G2 is the least integer p so that either a graph G of order p contains a copy of G1 or its complement Gc contains a copy of G2. In 1973, Burr and Erd?s offered a total of $25 for settling the conjecture that there is a constant c = c(d) so that R(G,G)≤ c|V(G)| for all d‐degenerate graphs G, i.e., the Ramsey numbers grow linearly for d‐degenerate graphs. We show in this paper that the Ramsey numbers grow linearly for degenerate graphs versus some sparser graphs, arrangeable graphs, and crowns for example. This implies that the Ramsey numbers grow linearly for degenerate graphs versus graphs with bounded maximum degree, planar graphs, or graphs without containing any topological minor of a fixed clique, etc. © 2005 Wiley Periodicals, Inc. J Graph Theory  相似文献   

4.
5.
Jacobson, Levin, and Scheinerman introduced the fractional Ramsey function rf (a1, a2, …, ak) as an extension of the classical definition for Ramsey numbers. They determined an exact formula for the fractional Ramsey function for the case k=2. In this article, we answer an open problem by determining an explicit formula for the general case k>2 by constructing an infinite family of circulant graphs for which the independence numbers can be computed explicitly. This construction gives us two further results: a new (infinite) family of star extremal graphs which are a superset of many of the families currently known in the literature, and a broad generalization of known results on the chromatic number of integer distance graphs. © 2009 Wiley Periodicals, Inc. J Graph Theory 63: 164–178, 2010  相似文献   

6.
7.
On the complete chromatic number of Halin graphs   总被引:8,自引:0,他引:8  
ThisresearchissupportedbytheNationalNaturalScienceFoundationofChina.Write.1.IntroductionDefinition1.FOrany3-connectedplanargraphG(V,E,F)withA(G)23,iftheboundaryedgesoffacefowhichisadjacenttotheothersareremoved,itbecomesatree,andthedegreeofeachvertexofV(fo)is3,andthenGiscalledaHalingraph;foiscalledtheouterfaceofG,andtheotherscalledtheinteriorfaces,thevenicesonthefacefoarecalledtheoutervenices,theoillersarecalledtheinterior...ti..,tll.ForanyplanargraphG(V,E,F),f,f'eF,fisadjacenttof'ifan…  相似文献   

8.
9.
Given a graph H and a positive integer n, Anti‐Ramsey number AR(n, H) is the maximum number of colors in an edge‐coloring of Kn that contains no polychromatic copy of H. The anti‐Ramsey numbers were introduced in the 1970s by Erd?s, Simonovits, and Sós, who among other things, determined this function for cliques. In general, few exact values of AR(n, H) are known. Let us call a graph H doubly edge‐critical if χ(H?e)≥p+ 1 for each edge eE(H) and there exist two edges e1, e2 of H for which χ(H?e1?e2)=p. Here, we obtain the exact value of AR(n, H) for any doubly edge‐critical H when n?n0(H) is sufficiently large. A main ingredient of our proof is the stability theorem of Erd?s and Simonovits for the Turán problem. © 2009 Wiley Periodicals, Inc. J Graph Theory 61: 210–218, 2009  相似文献   

10.
We introduce a list‐coloring extension of classical Ramsey numbers. We investigate when the two Ramsey numbers are equal, and in general, how far apart they can be from each other. We find graph sequences where the two are equal and where they are far apart. For ? ‐uniform cliques we prove that the list Ramsey number is bounded by an exponential function, while it is well known that the Ramsey number is superexponential for uniformity at least 3. This is in great contrast to the graph case where we cannot even decide the question of equality for cliques.  相似文献   

11.
In this paper we study the distance Ramsey number RD(s,t,d). The distance Ramsey number RD(s,t,d) is the minimum number n such that for any graph G on n vertices, either G contains an induced s-vertex subgraph isomorphic to a distance graph in Rd or G? contains an induced t-vertex subgraph isomorphic to the distance graph in Rd. We obtain the upper and lower bounds on RD(s,s,d), which are similar to the bounds for the classical Ramsey number R(?s[d/2]?,?s[d/2]?).  相似文献   

12.
The graph Ramsey numberR(G,H) is the smallest integer r such that every 2-coloring of the edges of Kr contains either a red copy of G or a blue copy of H. We find the largest star that can be removed from Kr such that the underlying graph is still forced to have a red G or a blue H. Thus, we introduce the star-critical Ramsey numberr(G,H) as the smallest integer k such that every 2-coloring of the edges of KrK1,r−1−k contains either a red copy of G or a blue copy of H. We find the star-critical Ramsey number for trees versus complete graphs, multiple copies of K2 and K3, and paths versus a 4-cycle. In addition to finding the star-critical Ramsey numbers, the critical graphs are classified for R(Tn,Km), R(nK2,mK2) and R(Pn,C4).  相似文献   

13.
14.
Size bipartite Ramsey numbers   总被引:1,自引:0,他引:1  
Yuqin Sun 《Discrete Mathematics》2009,309(5):1060-1066
Let B, B1 and B2 be bipartite graphs, and let B→(B1,B2) signify that any red-blue edge-coloring of B contains either a red B1 or a blue B2. The size bipartite Ramsey number is defined as the minimum number of edges of a bipartite graph B such that B→(B1,B2). It is shown that is linear on n with m fixed, and is between c1n22n and c2n32n for some positive constants c1 and c2.  相似文献   

15.
Xuding Zhu 《Discrete Mathematics》1998,190(1-3):215-222
Suppose G is a graph. The chromatic Ramsey number rc(G) of G is the least integer m such that there exists a graph F of chromatic number m for which the following is true: for any 2-colouring of the edges of F there is a monochromatic subgraph isomorphic to G. Let Mn = min[rc(G): χ(G) = n]. It was conjectured by Burr et al. (1976) that Mn = (n − 1)2 + 1. This conjecture has been confirmed previously for n 4. In this paper, we shall prove that the conjecture is true for n = 5. We shall also improve the upper bounds for M6 and M7.  相似文献   

16.
17.
18.
19.
The study of the CO‐irredundant Ramsey numbers t(n1, ···, nk) is initiated. It is shown that several values and bounds for these numbers may be obtained from the well‐studied generalized graph Ramsey numbers and the values of t(4, 5), t(4, 6) and t(3, 3, m) are calculated. © 2000 John Wiley & Sons, Inc. J Graph Theory 34: 258–268, 2000  相似文献   

20.
Suppose D is a subset of all positive integers. The distance graph G(Z, D) with distance set D is the graph with vertex set Z, and two vertices x and y are adjacent if and only if |xy| ≡ D. This paper studies the chromatic number χ(Z, D) of G(Z, D). In particular, we prove that χ(Z, D) ≤ |D| + 1 when |D| is finite. Exact values of χ(G, D) are also determined for some D with |D| = 3. © 1997 John Wiley & Sons, Inc. J Graph Theory 25: 287–294, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号