首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We show a straightforward, flexible synergistic approach that combines microfluidics, electrochemistry, and a general immobilization strategy to activate regions of a substrate selectively for the precise immobilization of ligands and cells in patterns for a variety of cell-based assays and cell migration and cell adhesion studies. We develop microfluidic microchips to control the delivery of electrolyte solution to select regions of an electroactive hydroquinone SAM. Once an electrical potential is applied to the substrate, only the hydroquinone exposed to electrolyte solution within the microfluidic channels oxidizes to the corresponding quinone. The quinone form can then react chemoselectively with oxyamine-tethered ligands to pattern the surface. Therefore, this microfluidic/electrochemistry strategy selectively activates the surface for ligand patterning that exactly matches the channel design of the microfluidic channel. We demonstrate the ease of this system by first quantitatively characterizing the electrochemical activation and immobilization of ligands on the surface. Second, we immobilize a fluorescent dye to show the fidelity of the methodology, and third, we show the immobilization of biospecific cell adhesive peptide ligands to pattern cells. This is the first report that combines microfluidics/electrochemistry and a general electroactive immobilization strategy to pattern ligands and cells. We believe that this strategy will be of broad utility for applications ranging from fundamental studies of cell behavior to patterning molecules on a variety of materials for molecular electronic devices.  相似文献   

2.
Fabrication of micropatterned surfaces to organize and control cell adhesion and proliferation is an indispensable technique for cell-based technologies. Although several successful strategies for creating cellular micropatterns on substrates have been demonstrated, a complex multistep process and requirements for special and expensive equipment or materials limit their prevalence as a general experimental tool. To circumvent these problems, we describe here a novel facile fabrication method for a micropatterned surface for cell patterning by utilizing the UV-induced conversion of the cell adhesive property of albumin, which is the most abundant protein in blood plasma. An albumin-coated surface was prepared by cross-linking albumin with ethylene glycol diglycidyl ether and subsequent casting of the cross-linked albumin solution on the cell culture dish. While cells did not attach to the albumin surface prepared in this way, UV exposure renders the surface cell-adhesive. Thus, surface micropatterning was achieved simply by exposing the albumin-coated surface to UV light through a mask with the desired pattern. Mouse fibroblast L929 cells were inoculated on the patterned albumin substrates, and cells attached and spread in a highly selective manner according to the UV-irradiated pattern. Although detailed investigation of the molecular-level mechanism concerning the change in cell adhesiveness of the albumin-coated surface is required, the present results would give a novel facile method for the fabrication of cell micropatterned surfaces.  相似文献   

3.
Cell rolling is an important physiological and pathological process that is used to recruit specific cells in the bloodstream to a target tissue. This process may be exploited for biomedical applications to capture and separate specific cell types. One of the most commonly studied proteins that regulate cell rolling is P-selectin. By coating surfaces with this protein, biofunctional surfaces that induce cell rolling can be prepared. Although most immobilization methods have relied on physisorption, chemical immobilization has obvious advantages, including longer functional stability and better control over ligand density and orientation. Here we describe chemical methods to immobilize P-selectin covalently on glass substrates. The chemistry was categorized on the basis of the functional groups on modified glass substrates: amine, aldehyde, and epoxy. The prepared surfaces were first tested in a flow chamber by flowing microspheres functionalized with a cell surface carbohydrate (sialyl Lewis(x)) that binds to P-selectin. Adhesion bonds between P-selectin and sialyl Lewis(x) dissociate readily under shear forces, leading to cell rolling. P-selectin immobilized on the epoxy glass surfaces exhibited enhanced long-term stability of the function and better homogeneity as compared to that for surfaces prepared by other methods and physisorbed controls. The microsphere rolling results were confirmed in vitro with isolated human neutrophils. This work is essential for the future development of devices for isolating specific cell types based on cell rolling, which may be useful for hematologic cancers and certain metastatic cancer cells that are responsive to immobilized selectins.  相似文献   

4.
Micrometer- and submicrometer-scale surface roughness enhances osteoblast differentiation on titanium (Ti) substrates and increases bone-to-implant contact in vivo. However, the low surface wettability induced by surface roughness can retard initial interactions with the physiological environment. We examined chemical modifications of Ti surfaces [pretreated (PT), R(a) ≤ 0.3 μm; sand blasted/acid etched (SLA), R(a) ≥ 3.0 μm] in order to modify surface hydrophilicity. We designed coating layers of polyelectrolytes that did not alter the surface microstructure but increased surface ionic character, including chitosan (CHI), poly(L-glutamic acid) (PGA), and poly(L-lysine) (PLL). Ti disks were cleaned and sterilized. Surface chemical composition, roughness, wettability, and morphology of surfaces before and after polyelectrolyte coating were examined by X-ray photoelectron spectroscopy (XPS), contact mode profilometry, contact angle measurement, and scanning electron microscopy (SEM). High-resolution XPS spectra data validated the formation of polyelectrolyte layers on top of the Ti surface. The surface coverage of the polyelectrolyte adsorbed on Ti surfaces was evaluated with the pertinent SEM images and XPS peak intensity as a function of polyelectrolyte adsorption time on the Ti surface. PLL was coated in a uniform thin layer on the PT surface. CHI and PGA were coated evenly on PT, albeit in an incomplete monolayer. CHI, PGA, and PLL were coated on the SLA surface with complete coverage. The selected polyelectrolytes enhanced surface wettability without modifying surface roughness. These chemically modified surfaces on implant devices can contribute to the enhancement of osteoblast differentiation.  相似文献   

5.
Cellular patterning on silicon platforms is the basis for development of integrated cell-based biosensing devices, for which long-term cell selectivity and biostability remain a major challenge. We report the development of a silicon-based platform in a metal-insulator format capable of producing uniform and biostable cell patterns with long-term cell selectivity. Substrates patterned with arrays of gold electrodes were surface-engineered such that the electrodes were activated with fibronectin to mediate cell attachment and the silicon oxide background was passivated with PEG to resist protein adsorption and cell adhesion. Three types of oxide surfaces, i.e., native oxide, dry thermally grown oxide, and wet thermally grown oxide, were produced to illustrate the effect of oxide state of the surface on long-term cell selectivity. Results indicated that the cell selectivity over time differed dramatically among three patterned platforms and the best cell selectivity was found on the dry oxide surface for up to 10 days. Surface analysis results suggested that this enhancement in cell selectivity may be related to the presence of additional, more active oxide states on the dry oxide surface supporting the stability of PEG films and effectively suppressing the cell adhesion. This research offers a new strategy for development of stable and uniform cell-patterned surfaces, which is versatile for immobilization of silane-based chemicals for preparation of biostable interfaces.  相似文献   

6.
All genomic transactions in eukaryotes take place in the context of the nucleosome, the basic unit of chromatin, which is responsible for DNA compaction. Overcoming the steric hindrance that nucleosomes present for DNA‐processing enzymes requires significant conformational changes. The dynamics of these have been hard to resolve. Single‐pair Fluorescence Resonance Energy Transfer (spFRET) microscopy is a powerful technique for observing conformational dynamics of the nucleosome. Nucleosome immobilization allows the extension of observation times to a limit set only by photobleaching, and thus opens the possibility of studying processes occurring on timescales ranging from milliseconds to minutes. It is crucial however, that immobilization itself does not introduce artifacts in the dynamics. Here we report on various nucleosome immobilization strategies, such as single‐point attachment to polyethylene glycol (PEG) or surfaces coated with bovine serum albumin (BSA), and confinement in porous agarose or polyacrylamide gels. We compare the immobilization specificity and structural integrity of immobilized nucleosomes. A crosslinked star polyethylene glycol coating performs best with respect to tethering specificity and nucleosome integrity, and enables us to reproduce for the first time bulk nucleosome unwrapping kinetics in single nucleosomes without immobilization artifacts.  相似文献   

7.
Modulation of material properties and growth factor application are critical in constructing suitable cell culture environments to induce desired cellular functions. Sulfonated polyrotaxane (PRX) surfaces with immobilized vascular endothelial growth factors (VEGFs) are prepared to improve network formation in vascular endothelial cells. Sulfonated PRXs, whereby sulfonated α‐cyclodextrins (α‐CDs) are threaded onto a linear poly(ethylene glycol) chain capped with bulky groups at both terminals, are coated onto surfaces. The molecular mobility of sulfonated PRX surfaces is modulated by tuning the number of threading α‐CDs. VEGF is immobilized onto surfaces with varying mobility. Low mobility and VEGF‐immobilization reinforce cell proliferation, yes‐associated protein activity, and rhoA, pdgf, ang‐1, and pecam‐1 gene expression. Highly mobile surfaces and soluble VEGF weakly affect these cell responses. Network formation is strongly stimulated in vascular endothelial cells only on low‐mobility VEGF‐immobilized surfaces, suggesting that molecular mobility and VEGF immobilization synergistically control cell function.  相似文献   

8.
Dielectrophoresis (DEP) for cell manipulation has focused, for the most part, on approaches for separation/enrichment of cells of interest. Advancements in cell positioning and immobilization onto substrates for cell culture, either as single cells or as cell aggregates, has benefited from the intensified research efforts in DEP (electrokinetic) manipulation. However, there has yet to be a DEP approach that provides the conditions for cell manipulation while promoting cell function processes such as cell differentiation. Here we present the first demonstration of a system that combines DEP with a hybrid cell adhesive material (hCAM) to allow for cell entrapment and cell function, as demonstrated by cell differentiation into neuronlike cells (NLCs). The hCAM, comprised of polyelectrolytes and fibronectin, was engineered to function as an instantaneous cell adhesive surface after DEP manipulation and to support long-term cell function (cell proliferation, induction, and differentiation). Pluripotent P19 mouse embryonal carcinoma cells flowing within a microchannel were attracted to the DEP electrode surface and remained adhered onto the hCAM coating under a fluid flow field after the DEP forces were removed. Cells remained viable after DEP manipulation for up to 8 d, during which time the P19 cells were induced to differentiate into NLCs. This approach could have further applications in areas such as cell-cell communication, three-dimensional cell aggregates to create cell microenvironments, and cell cocultures.  相似文献   

9.
This study investigates the effect of surface immobilization on the bactericidal function of a quaternary ammonium compound. Quaternary ammonium silane (QAS) coated planar surfaces did not produce any measurable mortality of Staphylococcus aureus, while 1 µm QAS‐coated microparticles did produce S. aureus mortality. The experiments using QAS‐coated microparticles indicate that the ability of QAS molecules to disrupt the cell wall is not hindered by covalent immobilization of QAS to a surface. These results provide evidence that S. aureus cells on a QAS‐coated planar surface are not exposed to a sufficient number of QAS molecules to produce significant mortality. This result has important implications for the development of self‐decontaminating coatings. Covalent immobilization is used to prevent leaching of the bactericidal compound. However, covalent immobilization may result in a significant tradeoff in bactericidal performance. Published in 2007 by John Wiley & Sons, Ltd.  相似文献   

10.
The interaction of organic molecules with mineral surfaces is a subject of interest in a variety of disciplines. Enzymes are able to be sorbed and immobilized by clay minerals and humic colloids in soil environment. The present study was done to elucidate some aspects of sorption and immobilization of cellulase on soil components by analysis of the sorption, and immobilization of cellulase on Avicel, a soil sample, illite, kaolinite, montmorillonite, and palygorskite. Palygorskite displayed the highest sorption capacity. Sorbents coated with hydroxyaluminum displayed significantly higher capacity than uncoated sorbents. The positive effects of Al(OH)(x) coating on sorption capacities of the different sorbents were not equal. The effect decreased in the order soil > palygorskite > kaolinite > Avicel > montmorillonite > illite. The amount of sorbed cellulase desorbed from external surfaces of soil was quite low (about 16%), especially in coated samples (about 6%). X-ray diffraction analysis of K-montmorillonite and Ca-montmorillonite showed that Al(OH)(x) was intercalated between the montmorillonite layers. Immobilization of cellulase on the sorbents did not result in expansion of their crystal structures. Therefore, it may be concluded that the amount of cellulase immobilized on internal surfaces of the sorbents was negligible.  相似文献   

11.
Micro contact printing (microCP) has been established as a simple technique for high-resolution protein patterning for micro- and nanoarrays. However, as biochemical assays based on immobilized protein arrays progress from immunoassays to more delicate functional assays, the demand for methods of miniaturized, gentle, and oriented immobilization, which are applicable to many different target proteins, becomes larger. In this study, we present a novel microCP templated assembly approach, based on a recombinant SNAP-FLAG-HIS 10 (SFH) immobilization vehicle, which exploits the recently developed SNAP-tag protein. The SNAP-tag is derived from the human DNA repair protein hAGT, which covalently transfers the alkyl group of benzyl guanine (BG) substrates onto itself. We have designed a model SFH cassette carrying three tags (SNAP-tag, FLAG-tag, and HIS-tag), each of which can be used for fluorescence labeling or surface immobilization. When patterns of streptavidin modified with BG-biotin (streptavidin-BG) are stamped onto a surface, the SFH can subsequently assemble on the ligand pattern from solution, functioning as a general immobilization vehicle for high-resolution patterning of any protein expressed in the SFH cassette, in a gentle and oriented manner. Alternatively, the SFH can be site-selectively biotinylated using BG-biotin and, subsequently, assemble on stamped streptavidin. We exploit several ways to biotinylate the SFH protein via the SNAP-tag, promoting its templated assembly on micropatterns of streptavidin in four complementary formats. Quantitative analysis of the obtained patterns, revealed by immunostaining, indicates that all four approaches resulted in proper SFH immobilization and antibody recognition, demonstrating the versatility of the SFH cassette and the potential for high resolution patterning applications. Also, our data confirm that streptavidin can be stamped directly on surfaces, without loss of activity. While three strategies resulted in similar patterning efficiencies, one particular approach--namely templated assembly of SFH directly on streptavidin-BG patterns--resulted in an order of magnitude increase in patterning efficiency.  相似文献   

12.
In this Feature Article we describe recent progress in covalent surface patterning by microcontact chemistry. Microcontact chemistry is a variation of microcontact printing based on the transfer of reactive "ink" molecules from a microstructured, elastomeric stamp onto surfaces modified with complementary reactive groups, leading to a chemical reaction in the area of contact. In comparison with other lithographic methods, microcontact chemistry has a number of advantageous properties including very short patterning times, low consumption of ink molecules, high resolution and large area patterning. During the past 5 years we and many others have investigated a set of different reactions that allow the modification of flat and also spherical surfaces in an effective way. Especially click-type reactions were found to be versatile for substrate patterning by microcontact chemistry and were applied for chemical modification of reactive self-assembled monolayers and polymer surfaces. Microcontact chemistry has already found broad application for the production of functional surfaces and was also used for the preparation of DNA, RNA, and carbohydrate microarrays, for the immobilization of proteins and cells and for the development of sensors.  相似文献   

13.
The seeding of endothelial cells on biomaterial surfaces has become a major challenge to achieve better haemocompatibility of these surfaces. Multilayers of polyelectrolytes formed by the layerby-layer method are promising in this respect. In this study, the interactions of endothelial cells with multilayered polyelectrolytes films were investigated. The build-ups were prepared by selfassembled alternatively adsorbed polyanions and polycations functionalised with fibronectin and collagen. Anionic poly(sodium 4-styrenesulfonate) and cationic poly(allylamine hydrochloride) polyelectrolytes were chosen as a model system. Elaborated surfaces were characterised by electrochemical impedance spectroscopy and cyclic voltammetry. The modified electrode showed good reversible electrochemical properties and high stability in an electrolyte solution. The film ohmic resistance was highest when the film was coated with fibronectin; the parameters so determined were correlated with atomic force microscopy images. Cell colorimetric assay (WST-1) and immunofluorescence were used to quantify the cell viability and evaluate the adhesion properties. When cultured on a surface where proteins were deposited, cells adhered and proliferated better with fibronectin than with collagen. In addition, a high surface free energy was favourable to adhesion and proliferation (48.8 mJ m−2 for fibronectin and 39.7 mJ m−2 for collagen, respectively). Endothelial cells seeded on functionalised-polyelectrolyte multilayer films showed a good morphology and adhesion necessary for the development of a new endothelium.  相似文献   

14.
The patterning and immobilization of protein molecules onto functionalized silicon substrate through surface silane chemistry is of interest because protein patterning is an important prerequisite for the development of protein-based diagnostics in biological and medicinal fields. As a model system, mesoscale netty lysozyme arrays were assembled on oxidized undecyltrichlorosilane (UTSox) monolayer coated silicon surface through nanosphere lithography. The size of the arrays ranged from nanometer to micrometer can be easily adjusted by changing the size of nanospheres applied on the surface. By using nanosphere lithography, we are capable of fabricating a regular array of protein islands over centimeter sample regions. The created lysozyme protein patterns were characterized by atomic force microscopy (AFM) and fluorescence microscope, respectively. The analysis has demonstrated that this newly established approach offers a faster and more reliable process to fabricate netty protein arrays over large areas compared to conventional scanning-probe based fabrication methods. Furthermore, the carboxylic acid-terminated layer on surfaces is particularly effective for immobilizing protein molecules through either electrostatic interactions or covalent attachment via imine bonds. Therefore, the negative-toned protein structure on the surface with carboxylic acid groups coated on the bare areas makes it possible to fabricate two types of protein molecules on one surface.  相似文献   

15.
《Electroanalysis》2005,17(13):1171-1180
In this paper, we describe a microchip‐based system for amperometrically monitoring the amount of catecholamines released from rat pheochromocytoma (PC 12) cells. Key to this system is a novel, yet simple method for the immobilization of PC 12 cells in poly(dimethylsiloxane) (PDMS)‐based microchannels. The procedure involves selectively coating microchannels with collagen followed by introduction of PC 12 cells over the PDMS structure, with the cells being immobilized only on the coated portion of the channels. The cell‐coated microchannels can then be reversibly sealed to a glass plate containing electrodes for amperometric detection, resulting in an immobilized cell reactor with integrated microelectrodes. Nafion‐coated microelectrodes made by micromolding of carbon inks were used to measure calcium‐induced catecholamine release from the cells. Varying concentrations of PC 12 cells immobilized in the microchannels led to a catecholamine release ranging from 20 to 160 μM when the cells were stimulated with a calcium solution. This microchip approach leads to a three‐dimensional culture that can be used with this or other cells lines to study the effect of external stimuli on neurotransmitter release.  相似文献   

16.
魏雨  纪璎  肖琳琳  计剑 《高分子学报》2010,(12):1474-1478
利用AIBN引发自由基反应,由单体2-(甲基丙烯酰氧基)乙基-2-(三甲基氨基)乙基磷酸酯(MPC)、甲基丙烯酸十八酯(SMA)、对硝基苯氧羰基聚乙二醇甲基丙烯酸酯(MEONP)合成了一种新型类细胞膜仿生涂层材料.MPC可以阻抗非特异性吸附;MEONP可以结合抗体或多肽促进特异性识别.通过表面固定的方法引入多肽序列Arg-Glu-Asp-Val(REDV),使涂层具有内皮细胞选择性.核磁、紫外吸收、红外光谱表征证实聚合物的组成以及REDV多肽在表面的固定;并通过血浆复钙化实验表征涂层的血液相容性.细胞黏附与增殖实验反映REDV多肽构建的涂层表面具备良好的特异性识别并结合内皮细胞的能力.  相似文献   

17.
In order to understand the behavior of individual cells, single cell analyses have attracted attention since most cell-based assays provide data with values averaged across a large number of cells. Techniques for the manipulation and analysis of single cells are crucial for understanding the behavior of individual cells. In the present study, we have developed single cell culture arrays using magnetic force and a pin holder, which enables the allocation of the magnetically labeled cells on arrays, and have analyzed their dynamics. The pin holder was made from magnetic soft iron and contained more than 6000 pillars on its surface. The pin holder was placed on a magnet to concentrate the magnetic flux density above the pillars. NIH/3T3 fibroblasts that were labeled with magnetite cationic liposomes (MCLs) were seeded into a culture dish, and the dish was placed over the pin holder with the magnet. The magnetically labeled cells were guided on the surface where the pillars were positioned and allocated on the arrays with a high resolution. Single-cell patterning was achieved by adjusting the number of cells seeded, and the target cell was collected by a micromanipulator after removing the pin holder with the magnet. Furthermore, change in the morphology of magnetically patterned cells was analyzed by microscopic observation, and cell spreading on the array was observed with time duration. Magnetic force-based cell patterning on cell culture arrays would be a suitable technique for the analysis of cell behavior in studies of cell-cell variation and cell-cell interactions.  相似文献   

18.
Interfacing carbon nanotubes with living cells   总被引:1,自引:0,他引:1  
We developed a polymer coating for carbon nanotubes (CNTs) that mimics the mucin glycoprotein coating of mammalian cells. CNTs coated with these mucin mimic polymers have two novel properties: they can bind to carbohydrate receptors, providing a means for biomimetic interactions with cell surfaces, and, importantly, they are rendered nontoxic to cells.  相似文献   

19.
Up to today, several techniques have been used to maintain cells in culture for studying many aspects of cell biology and physiology. More often, cell culture is dependent on proper anchorage of cells to the growth surface. Poly-l-lysine is commonly used as adhesive molecule. In this study, we present, as an alternative to poly-l-lysine, new polymer film substrates, realized by electropolymerization of different monomers on fluorine-doped tin oxide (FTO) surfaces since electropolymerization is a good method to coat selectively metallic or semiconducting electrodes with polymer films. So, the adhesion, proliferation and morphology of rat neuronal cell lines were investigated on polymer treated surfaces. Several amine-based biocompatible polymers were tested: polyethyleneimine (PEI), polypropyleneimine (PPI), polypyrrole (PPy) and poly(p-phenylenediamine) (PPPD). These polymer films were coated on FTO surfaces by electrochemical oxidation. After 8 h in a culture medium, a high percentage of cells was found to be attached to PEI and PPI compared to the other polymers and to the reference surfaces (glass and FTO uncovered). After 24 and 72 h in the culture medium, cells were found to proliferate faster on PEI and PPI than on other polymers and reference surfaces. Consequently, cells have a greater fold expansion on PEI and PPI than on PPPD, PPy or glass and FTO uncoated. From these results, we deduce that PEI and PPI can be useful as coating surface to cultivate neuronal cells.  相似文献   

20.
The aim of the present study was to evaluate the suitability of cellulose-based scaffolds coated with pure sodium silicate gel and sodium silicate gels accumulated with different concentrations of the bisphosphonate pamidronate as scaffolds for attachment, proliferation and differentiation of human fetal osteoblasts (hFOB 1.19). Human osteoblasts were cultured in vitro for a period up to 14 days on different cellulose scaffolds. Unmodified and sodium silicate coated cellulose scaffolds were used as control. Two surface-coated modifications of cellulose were applied. The scaffolds were coated in a modified two-step dip coating process with pure sodium silicate gel and pamidronate enriched sodium silicate gel, respectively. In order to investigate the influence of the pamidronate, concentrations of 0.667 mg Na-pamidronate/ml sodium silicate solution, 0.333 mg Na-pamidronate/ml sodium silicate solution and 3.33 x 10(-3) mg Na-pamidronate/ml sodium silicate solution were used for the coating process. Cell proliferation, vitality and attachment were examined by means of cell counting, WST-1 test, fluorescence and scanning electron microscopy. The relative grade of differentiation of hFOB cells was examined by using quantitative real-time polymerase chain reaction (qRT-PCR) analysis for the gene expression of alkaline phosphatase and osteocalcin. Proliferation and differentiation of human osteoblasts was enhanced by the sodium silicate coatings accumulated with pamidronate compared to pure sodium silicate coatings. There was a reciprocal correlation of vitality with the concentration of pamidronate. The highest vitality was found on surfaces with the lowest pamidronate accumulation. Alkaline phosphatase, an early differentiation marker, was overexpressed after 7 days in cells on all pamidronate-containing surfaces (up to 350% compared to untreated cellulose). Osteocalcin, a late differentiation marker, was overexpressed after 14 days in cells on all coated surfaces (up to 300,000% compared to untreated cellulose). The results indicate that due to the modified coating procedure a homogeneous coating and thus, an enhancement of cell attachment and subsequent cellular functions can be achieved. Low concentrations of pamidronate seem to have a relevant effect on cell proliferation and vitality and, therefore, can be recommended for the improvement of the properties of a biomaterial.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号