首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A facile and efficient approach for the synthesis of new conjugated donor-π-acceptor (D-π-A) chromophores has been developed, in which benzodifuran (BDF) and/or triphenyl amine (TPA) units are the donor moieties, linked by ethylenic bridges to electron-deficient anthraquinone (AQ) and 11,11,12,12-tetracyano-9,10-anthraquinodimethane (TCAQ) as the acceptor moieties. The resultant triads either with a symmetric A–D–A or an asymmetric D′–D–A structure show intense absorption bands in the visible spectral region due to efficient intramolecular charge transfer (ICT) from the HOMO localized on the BDF core to the LUMO localized on the AQ or the TCAQ unit. Electronic interactions between these redox-active components were studied by a combination of cyclic voltammetry, spectroelectrochemistry, UV-visible and ultrafast transient absorption spectroscopy. Analysis of the femtosecond excited-state dynamics reveal that all triads undergo a rapid charge recombination process which occurs within a few picoseconds, indicating that ethylenic linkers can facilitate electron delocalization among BDF and AQ/TCAQ units and thus impart effective electronic interactions between them.  相似文献   

2.
New C(60)-based triads, constituted by a fulleropyrrolidine moiety and two different electroactive units [donor 1-donor 2 (10, 15a,b), or donor 1-acceptor (17, 21)], have been synthesized by 1,3-dipolar cycloaddition reaction of azomethyne ylides to C(60) and further acylation reaction on the pyrrolidine nitrogen. The electrochemical study reveals some electronic interaction between the redox-active chromophores. Triads bearing tetrathiafulvalene (TTF) and ferrocene (Fc) (10) or pi-extended TTFs and Fc (15a,b) show reduction potentials for the C(60) moiety which are cathodically shifted in comparison to the parent C(60). In contrast, triads endowed with Fc and anthraquinone (AQ) (17) or Fc and tetracyanoanthraquinodimethane (TCAQ) (21) present reduction potentials for the C(60) moiety similar to C(60). Fluorescence experiments and time-resolved transient absorption spectroscopy reveal intramolecular electron transfer (ET) processes from the stronger electron donor (i.e., TTF or extended TTF) to the fullerene singlet excited state, rather than from the poorer ferrocene donor in 10, 15a,b. No evidence for a subsequent ET from ferrocene to TTF(*)(+) or pi-extended TTF(*)(+) was observed.  相似文献   

3.
Two triads (donor-spacer-acceptor), exTTF-BN-C60 (6) and ZnP-BN-C60 (7), in which electron donors (i.e., exTTF or ZnP) are covalently linked to C60 through a chiral binaphthyl bridge (BN), have been prepared in a multistep synthetic procedure starting from a highly soluble enantiomerically pure binaphthyl building block (1). Unlike other oligomeric bridges, with binaphthyl bridges, the conjugation between the donor and the acceptor units is broken and geometric conformational changes are facilitated. Consequently, distances and electronic interactions between the donor and C60 are drastically changed. Both donor-spacer-acceptor (D-s-A) systems (i.e., 6 and 7) exhibit redox processes that correspond to all three constituent electroactive units, namely, donor, BN, and C60. Appreciable differences were, however, observed when comparing triad 6, in which no significant exTTF-C60 interactions were noted, with D-s-A 7, whose geometry favors donor-acceptor and pi-pi interactions that result in ZnP-C60 electronic communication. This through-space interaction is, for example, reflected in the redox potentials. Excited-state studies, carried out by fluorescence and transient absorption spectroscopy, also support through-space rather than through-bond interactions. Although both triads form the corresponding radical-ion pair, that is, exTTF*+-BN-C60*- and ZnP*+-BN-C60*-, dramatic differences were found in their lifetimes: 165 micros and 730 ns, respectively.  相似文献   

4.
Introduction Extensive studies have been performed on electron donor-acceptor supramolecular systems, which have been used as models to investigate charge-transfer interactions,1 photoinduced electron and energy transfer reactions (for understanding the natural photosynthesis mechanisms).2 In recent years, molecular devices such as molecular shuttles and molecular switches based on electron donor-acceptor supramolecules have been proposed and studied.3 Since the synthesis of tetrathiafulvalene…  相似文献   

5.
Ever since the first example of a double‐decker complex (SnPc2) was discovered in 1936, MPc2 complexes with π systems and chemical and physical stabilities have been used as components in molecular electronic devices. More recently, in 2003, TbPc2 complexes were shown to be single‐molecule magnets (SMMs), and researchers have utilized their quantum tunneling of the magnetization (QTM) and magnetic relaxation behavior in spintronic devices. Herein, recent developments in LnIII‐Pc‐based multiple‐decker SMMs on surfaces for molecular spintronic devices are presented. In this account, we discuss how dinuclear TbIII‐Pc multiple‐decker complexes can be used to elucidate the relationship between magnetic dipole interactions and SMM properties, because these complexes contain two TbPc2 units in one molecule and their intramolecular TbIII?TbIII distances can be controlled by changing the number of stacks. Next, we focus on the switching of the Kondo signal of TbIII‐Pc‐based multiple‐decker SMMs that are adsorbed onto surfaces, their characterization using STM and STS, and the relationship between the molecular structure, the electronic structure, and the Kondo resonance of TbIII‐Pc multiple‐decker complexes.

  相似文献   


6.
Recrystallization of the previously reported monosolvated bis(phthalocyaninato)niobium(IV), [Pc2Nb].CINP (CINP = 1-chloronaphthalene), has allowed isolation of a single crystal of a new solvated form, i.e. [Pc2Nb]. 3.5CINP, whose structure has been elucidated by X-ray work: space group P2(1)/n (No. 14); a = 16.765(3), b = 23.800(4), c = 19.421(4) A; alpha = gamma = 90 degrees, beta = 92.51(2) degrees; Z = 4. The sandwiched material is a "stapled" molecule, characterized by the presence of two intramolecular interligand C-C sigma bonds and highly strained phthalocyanine units, as formerly observed by crystallographic work for its Ti(IV) analogue, [Pc2Ti], and the +1 corresponding fragment, [Pc2Nb]+, present in the species [Pc2Nb](l3)(l2)0.5.3.5CINP. [Pc2Nb] appears to be reluctant to undergo further oxidation above the +1 oxidation state. Detailed theoretical studies by DFT and TDDFT methods have been developed on [Pc2Nb] and [Pc2Nb]+, also extended for comparison to the Ti(IV) complex [Pc2Ti], and an adequate picture of the ground-state electronic structure of these species has been achieved. Moreover, the excitation energies and oscillator strengths calculated for the closed-shell systems, [Pc2Ti] and [Pc2Nb]+, provide a satisfactory interpretation of their characteristic visible optical spectra and help to rationalize the similar features observed in the visible spectrum of the open-shell "stapled" complex, [Pc2Nb]. Thin solid films (100-250 nm) of [Pc2Nb] deposited on ITO (indium-doped tin oxide) show a reversible redox process in neutral or acidic aqueous electrolytes. The electrochemical and electrochromic properties of the sandwiched complex, combined with impedance and UV/visible spectral measurements, are presented and discussed. The achieved electrochemical information, while substantially in keeping with the observed chemical redox behavior and theoretical predictions, qualifies [Pc2Nb] as an "optically passive" electrode and a promising material for its use in electrochromic devices.  相似文献   

7.
A new series of multicomponent ZnPc-Ru(bpy)(3) systems, 1a-c, consisting of a zinc-phthalocyanine linked through conjugated and/or nonconjugated connections to a ruthenium(II) tris(bipyridine) complex, has been synthesized. The ruthenium complexes 1a-c were prepared from phthalocyanines 2a-c, bearing a 4-substituted-2,2'-bipyridine ligand by treatment with [Ru(bpy)2Cl2].2H2O. Different synthetic strategies have been devised to prepare the corresponding dyad precursors (2a-c). Compound 2a, for example, with an ethenyl bridge, was synthesized by statistical condensation of 4-tert-butylphthalonitrile and 5-[(E)-2-(3,4-dicyanophenyl)ethenyl]-2,2'-bipyridine (3) in the presence of zinc chloride. Compounds 2b and 2c, having, respectively, an amide or an ethynyl bridge, were prepared following a different synthetic approach. The method involves the coupling of an appropriate 5-substituted-2,2'-bipyridine to an unsymmetrical phthalocyanine suitably functionalized with an amino (4) or an ethynyl group (5). The photophysical properties of the dyads that are ZnPc-Ru(bpy)3 1a-c and related model compounds have been determined by a variety of steady-state (i.e., fluorescence) and time-resolved methods (i.e., fluorescence and transient absorption). Clearly, intramolecular electronic interactions between the two subunits dominate the photophysical events following the initial excitation of either chromophore. These intramolecular interactions lead, in the case of photoexcited ZnPc, to faster intersystem crossing kinetics compared to a ZnPc reference, while photoexcited [Ru(bpy)3]2+) undergoes a rapid and efficient transduction of triplet excited-state energy to the Pc.  相似文献   

8.
The solvent effects on the electronic absorption spectra of 9,10-anthraquinone (AQ) and its symmetric dihydroxy derivatives namely 1,5-dihydroxyanthraquinone (1,5-DHAQ) and 2,6-dihydroxyanthraquinone (2,6-DHAQ) have been studied in pure solvents and some binary solvent mixtures. The frequencies of the absorption for AQ and 2,6-DHAQ are quite solvent sensitive while those for 1,5-DHAQ are not. Due to the intramolecular hydrogen bond between the CO and OH groups, no influence of solvent hydrogen bond acceptors is observed in 1,5-DHAQ. This hydrogen bond gives a stable six member cycle which is not broken even by the strongest hydrogen bond acceptor solvents used in this work, such as DMSO and DMF. The Taft and Kamlet's solvatochromic comparison method was applied for AQ and 2,6-DHAQ. Aromatic solvents and aliphatic amines were not included in the correlations since they strongly deviate suggesting another type of interactions. All the π→π* bands of AQ and 2,6-DHAQ show strong influence of π* despite the fact that their dipole moment is zero. Although it would be reasonable to expect that in the absence of a solute dipole moment there is not significant orientation of solvent molecules around the solute molecules, in this case dipolar interactions between solute and solvent due to local effects might be expected. AQ may be considered as formed by two carbonyl groups weakly interacting with the benzene rings; that means that the carbonyl group can behave as an isolated dipole and independently of the other. To detect possible specific interactions between the AQ and aliphatic amines and aromatic hydrocarbons, preferential solvation in mixed solvent was investigated. It is concluded that EDA interactions are important in the solvation of AQ with these compounds as solvents.  相似文献   

9.
The synthesis and characterization of two phthalocyanine (Pc) structural isomers, 1 and 2, in which four 2,6-di(hexyloxy)phenyl units were attached directly to the 1,8,15,22- or 1,4,15,18-positions of the Pc rings, are described. Both Pcs 1 and 2 exhibited low melting points, i.e., 120 and 130 °C respectively, due to the reduction in intermolecular π-π interaction among the Pc rings caused by the steric hindrance of 2,6-dihexyloxybenzene units. The thermal behaviors were investigated with temperature-controlled polarizing optical microscopy, differential scanning calorimetry, powder X-ray diffraction, and absorption spectral analyses. Pc 1, having C4h molecular symmetry, organized into a lamellar structure containing lateral assemblies of Pc rings. In contrast, the other Pc 2 revealed the formation of metastable crystalline phases, including disordered stacks of Pcs due to rapid cooling from a melted liquid.  相似文献   

10.
Three new bisperylenebisimide-silicon phthalocyanine triads [(PBI)(2)-SiPcs 1, 2, and 3] connected with either rigid or flexible bridges were synthesized and characterized. A new synthetic approach to connect SiPc and PBI moieties through click chemistry produced triad 3 with an 80% yield. In (PBI)(2)-SiPc 1, PBI and SiPc are orthogonal and were connected with a rigid connector; triads 2 and 3 bear flexible aliphatic bridges, resulting in a tilted (2) or nearly parallel arrangement (3) of PBI and SiPc. Photoinduced intramolecular processes in these (PBI)(2)-SiPcs were studied and the results are compared with those of the reference compounds SiPc-ref and PBI-ref. The occurrence of electron-transfer processes between the SiPc and PBI units was confirmed by time-resolved emission and transient absorption techniques. Charge-separated (CS) states with lifetimes of 0.91, 1.3 and 2.0 ns for triads 1, 2, and 3, respectively, were detected using femtosecond laser flash photolysis. Upon the addition of Mg(ClO(4))(2), an increase in the lifetime of the CS states to 59, 110 and 200 μs was observed for triads (PBI)(2)-SiPcs 1, 2, and 3, respectively. The energy of the CS state (SiPc(·+)-PDI(·-)/Mg(2+)) is lower than the energy of both silicon phthalocyanine ((3)SiPc*-PDI) and perylenebisimide (SiPc-(3)PDI*) triplet excited states, which decelerates the metal ion-decoupled electron-transfer process for charge recombination to the ground state, thus increasing the lifetime of the CS state. The photophysics of the three triads demonstrate the importance of the rigidity of the spacer and the orientation between donor and acceptor units.  相似文献   

11.
Metal coordination was probed as a versatile approach for designing a novel electron donor/acceptor hybrid [PDIpy(4){Ru(CO)Pc}(4)] (1), in which four pyridines placed at the bay region of a perylenediimides (PDIpy(4)) coordinate with four ruthenium phthalocyanine units [Ru(CO)Pc]. This structural motif was expected to promote strong electronic coupling between the electron donors and the electron acceptor, a hypothesis that was confirmed in a full-fledged physicochemical investigation focusing on the ground and excited state reactivities. As far as the ground state is concerned, absorption and electrochemical assays indeed reveal a notable redistribution of electron density, that is, from the electron-donating [Ru(CO)Pc] to the electron-accepting PDIpy(4). The most important thing to note in this context is that both the [Ru(CO)Pc] oxidation and the PDIpy(4) reduction are rendered more difficult in 1 than in the individual building blocks. Likewise, in the excited state, strong electronic communication is the inception for a rapid charge-transfer process in photoexcited 1. Regardless of exciting [Ru(CO)Pc] or PDIpy(4), spectral characteristics of the [RuPc] radical cation (broad absorptive features from 425 to 600 nm with a maximum at 575 nm, as well as a band centered at 725 nm) and of the PDI radical anion (780 nm maximum) emerge. The correspondingly formed radical ion pair state lasts for up to several hundred picoseconds in toluene, for example. On the other hand, employing more polar solvents, such as dichloromethane, destabilizes the radical ion pair state.  相似文献   

12.
By means of scanning tunneling microscopy (STM), the self-assembly of two organic donor-acceptor-donor triads (donor=oligo(p-phenylene vinylene) (OPV); acceptor=perylene diimide (PDI)) and their mixtures has been investigated at the liquid/solid interface. Both triads differ in the nature of the substituents and, therefore, in the redox properties of the central perylene diimide unit (H or Cl). Thanks to the submolecular resolution, the distinct electronic properties of the units, within a triad and between the two triads, are reflected by the relative STM contrast in the bias-dependent imaging experiments. Moreover, scanning tunneling spectroscopy reveals an inverse rectifying behavior of the OPV and H-substituted PDI units, which is discussed in the framework of quasi-resonant tunneling. A striking difference is observed for the Cl-substituted triad.  相似文献   

13.
A novel donor-acceptor bisphthalocyanine (bis-Pc, 1) in which two different Pc units (Zn(II)-Pc and Ni(II)-Pc) are linked via vinylene spacers to the pseudopara positions of a central [2.2]paracyclophane moiety is described. The synthesis of 1 is achieved by two successive Heck reactions of pseudopara-divinyl[2.2]paracyclophane 9 with, sequentially, a zinc(II)- and a nickel(II)-iodophthalocyanine (4 and 5, respectively). The self-assembly ability of 1, which is the result of the complementary donor-acceptor character of its phthalocyanine units, has been assessed by a variety of techniques. It is revealed that 1 forms one-dimensional aggregates of nanometer-sized dimension, whereas equimolar mixtures of the donor and acceptor Pc subunits 2 and 3, although strongly interacting, do not give large arrays. The aggregates of 1 represent a novel type of supramolecular polymers based mainly upon donor-acceptor interactions.  相似文献   

14.
A novel series of double‐decker lanthanide(III) bis(phthalocyaninato)–C60 dyads [LnIII(Pc)(Pc′)]–C60 (M=Sm, Eu, Lu; Pc=phthalocyanine) ( 1 a – c ) have been synthesized from unsymmetrically functionalized heteroleptic sandwich complexes [LnIII(Pc)(Pc′)] (Ln=Sm, Eu, Lu) 3 a – c and fulleropyrrolidine carboxylic acid 2 . The sandwich complexes 3 a – c were obtained by means of a stepwise procedure from unsymmetrically substituted free‐base phthalocyanine 5 , which was first transformed into the monophthalocyaninato intermediate [LnIII(acac)(Pc)] and further reacted with 1,2‐dicyanobenzene in the presence of 1,8‐diazabicyclo[5.4.0]undec‐7‐ene (DBU). 1H NMR spectra of the bis(phthalocyaninato) complexes 3 a – c and dyads 1 a – c were obtained by adding hydrazine hydrate to solutions of the complexes in [D7]DMF, a treatment that converts the free radical double‐deckers into the protonated species, that is, [LnIII(Pc)(Pc′)H] and [LnIII(Pc)(Pc′)H]–C60. The electronic absorption spectra of 3 a – c and 1 a – c in THF exhibit typical transitions of free‐radical sandwich complexes. In the case of dyads 1 a – c , the spectra display the absorption bands of both constituents, but no evidence of ground‐state interactions could be appreciated. When the UV/Vis spectra of 3 a – c and 1 a – c were recorded in DMF, typical features of the reduced forms were observed. Cyclic voltammetry studies for 3 a – c and 1 a – c were performed in THF. The electrochemical behavior of dyads 1 a – c is almost the exact sum of the behavior of the components, namely the double‐decker [LnIII(Pc)(Pc′)] and the C60 fullerene, thus confirming the lack of ground‐state interactions between the electroactive units. Photophysical studies on dyads 1 a – c indicate that only after irradiation at 387 nm, which excites both C60 and [LnIII(Pc)(Pc′)] components, a photoinduced electron transfer from the [LnIII(Pc)(Pc′)] to C60 occurs.  相似文献   

15.
Two donor-σ-acceptor-σ-donor triads incorporating tetrathiafulvalene (TTF) and 3,4,9,10-perylene tetracarboxylic diimides (PDI) units were synthesized. The structures of the triads and their intermediates were characterized by 1H NMR, 13C NMR, MS, IR. The results of UV–vis and cyclic voltammetry (CV) of the triads indicated negligible intramolecular charge transfer (ICT) interaction in their ground states. The fluorescence and fluorescence lifetimes of the triads were reduced compared to PDIs, which evidently indicated that photoinduced electron transfer (PET) interaction occurred from the TTF unit to the PDI unit in the excited state. The fluorescence intensity of the triads could be reversibly modulated by sequential oxidation and reduction of the TTF unit using the chemical methods. Therefore two new fluorescence molecular switches based on TTF and PDI units were established.  相似文献   

16.
Two types of push-pull chromophores built around thiophene-based pi-conjugating spacers rigidified by either covalent bonds or noncovalent intramolecular interactions have been analysed by means of IR and Raman spectroscopical measurements in the solid state as well as in a variety of solvents. Comparison of the Raman features of NLO-phores based on a covalently rigidified dithienylene (DTE) spacer with those of their open chain DTE analogues shows that the bridging of the central double bond of DTE with the nearest beta-positions of the thienyl units through two ethylene bridges significantly improves the intramolecular charge transfer. This also occurs for NLO-phores based on a 2,2'-bi(3,4-ethylenedioxythiophene) (BEDOT) spacer as compared with their corresponding parent compounds based on an unsubstituted bithiophene (BT) spacer. For NLO-phores based on a BEDOT spacer, noncovalent intramolecular interactions between sulfur and oxygen atoms are responsible for the rigidification of the spacer. The Raman spectra of these NLO-phores obtained in the form of solutes in dilute solutions reveal two different behaviours: i) chromophores based on covalently bridged or open chain DTE spacers display Raman spectral profiles in solution quite similar to those of the corresponding solids, with a very little dependence on the polarity of the solvent, while ii) larger spectral changes are noticed for NLO-phores built around BEDOT or BT spacers on going from solids to solutions. In the second case, spectral changes must be ascribed not solely to conformational distortions of the donor and acceptor end groups with respect to the pi-conjugated backbone mean-square-plane (as for the DTE-based NLO-phores) but also to distortions of the thienyl units of the pi-conjugating spacer from coplanarity. The insertion of vinylenic bridges between the thienyl units of the pi-conjugating spacer and between the spacer and the donor and acceptor end groups is a suitable strategy to reach a fairly large intramolecular charge transfer both in polar and nonpolar solvents. Density functional theory (DFT) calculations have been carried out to assign the relevant electronic and vibrational features and to derive useful information about the molecular structure of these NLO-phores.  相似文献   

17.
To elucidate how the protein-ligand docking structure affects electronic interactions in the electron-transfer process, we have analyzed time-resolved electron paramagnetic resonance spectra of photoinduced charge-separated (CS) states generated by light excitation of 9,10-anthraquinone-1-sulfonate (AQ1S(-)) bound to human serum albumin at a hydrophobic drug-binding region. The spectra have been explained in terms of the triplet-triplet electron spin polarization transfer model to determine both the geometries and the exchange couplings of the CS states of AQ1S(2-?)-histidine-242 radical cation (H242(+?)) and AQ1S(2-?)-tryptophan-214 radical cation (W214(+?)). For the CS state of the former, it has been revealed that, due to the orthogonal relationship between the singly occupied molecular orbitals of AQ1S(2-?) and H242(+?), the electronic coupling (5.4 cm(-1)) is very weak, contributing to the prevention of energy-wasting charge recombination, even at a contact edge-to-edge separation.  相似文献   

18.
Transition metal complexes of 6-aminomethyl-bis[methyl-2-(4,5-dihydro-4,4,5,5- tetramethylimidazolinyl-3-oxide-l-oxy)]-2,2'-bipyridine, bpyN(NIT)(2), 1, have been synthesized and characterized by FAB-MS, UV-vis, FT-IR, and EPR spectroscopies, elemental analysis, and susceptibility measurements. Single-crystal X-ray diffraction studies have been performed on all compounds giving the following crystal data: bpyN(NIT)(2), 1, triclinic, P(-)1, Z = 2, a = 10.7224(4) A, b = 11.0995(4) A, c = 13.1134(3) A, alpha = 114.101(9) degrees, beta = 97.476(9) degrees, gamma = 99.667(9) degrees; ZnbpyN(NIT)(2), 2, hexagonal, P3(2), Z = 3, a = 15.4545(3) A, b = 15.4545(3) A, c = 13.5594(3) A; NibpyN(NIT)(2), 3, hexagonal, P3(2), Z = 3, a = 15.2867(1) A, b = 15.2867(1) A, c = 13.7160(1) A; CubpyN(NIT)(2), 4, triclinic, P(-)l, Z = 2, a = 11.8640(4) A, b = 13.2023(4) A, c = 13.2661(5) A, alpha = 90.539(9) degrees, beta = 104.983(9) degrees, gamma = 113.252(9) degrees. The two radicals of the free ligand 1 are almost perpendicular to one another in the solid state, favoring a weak ferromagnetic interaction (J/k(B) = 8.8 K). The complexes obtained by wrapping the ligand around a single metal center gave rise to two different coordination schemes where the two radicals of 1 adopt a ON(3)O meridional (with Ni and Zn) or a ON(3)O facial conformation (with Cu), which strongly affects the magnetic and electronic properties (O accounts for the coordinated oxygen atoms of the nitroxide radicals and N(3) accounts for the tertiary amine). For 2, a model of a dimer has been used giving rise to a weak antiferromagnetic interaction between the radicals (J/k(B) = -5.3 K). For 3, a very strong intramolecular antiferromagnetic coupling has been found and estimated at J/k(B) = -230 K and J'/k(B) = -110 K between the nickel and each radical using an asymmetric model of a trimer. For 4, an unusual magnetic behavior is observed, dominated by antiferromagnetic interactions with a residual plateau at chiT = 0.63 emu.K.mol(-)(1). Molecular modeling at the CASSCF level is in keeping with an antiferromagnetic coupling of the radical bound with the Cu(II) in the equatorial position. The combined structural, electronic, and magnetic characteristics suggest that the use of a flexible molecule provide an additional approach for fine-tuning magnetic interactions.  相似文献   

19.
Ethynylated 2H-cyclohepta[b]furan-2-ones 5-15 have been prepared by Pd-catalyzed alkynylation of 3-iodo-5-isopropyl-2H-cyclohepta[b]furan-2-one (2) with the corresponding ethynylarenes or the reaction of 2-iodothiophene with 3-ethynyl-5-isopropyl-2H-cyclohepta[b]furan-2-one (4) under Sonogashira-Hagihara conditions. Compounds 5-15 reacted with tetracyanoethylene in a formal [2+2] cycloaddition reaction, followed by ring opening of the initially formed [2+2] cycloadducts, cyclobutenes, to afford the corresponding 1,1,4,4-tetracyanobutadienyl (TCBD) chromophores 16-26 in excellent yields. The intramolecular charge-transfer interactions between the 2H-cyclohepta[b]furan-2-one ring and TCBD acceptor moiety were investigated by UV/Vis spectroscopy and theoretical calculations. The redox behavior of the novel TCBD derivatives 16-26 was examined by cyclic voltammetry and differential pulse voltammetry, which revealed multistep electrochemical reduction properties, depending on the number of TCBD units in the molecule. Moreover, a significant color change was observed by UV/Vis spectroscopy under electrochemical reduction conditions.  相似文献   

20.
Kang J  Nelson JA  Lu M  Xie B  Peng Z  Powell DR 《Inorganic chemistry》2004,43(20):6408-6413
Two new charge-transfer hybrids with one or two ferrocenyl units covalently attached to a hexamolybdate cluster through an extended pi-conjugated bridge have been prepared using Pd-catalyzed coupling reactions on monoiodo- or diiodo-functionalized cluster substrates in over 60% yields. These hybrids have been characterized by (1)H NMR, FTIR, electrospray ionization mass spectrometry, and X-ray diffraction. The electronic spectra of these hybrids show a broad absorption tail extending beyond 550 nm, indicating the existence of charge-transfer transition from the ferrocenyl donor to the cluster acceptor. The observation of the clear charge-transfer transition indicates the contribution of charge-transfer resonance to the ground state in both 2a and 2b even though the donor-acceptor separation distance of 11.29 A is rather long, signaling a through-bond charge-transfer nature made possible by the organic pi-conjugated bridge. Cyclic voltammetry studies reveal a one-electron oxidation wave and a one-electron reduction wave for the hybrid with one ferrocenyl unit. For the one with two ferrocenyl units, a lower reduction potential and a two-electron oxidation wave are observed, indicating negligible electronic interactions between the two ferrocenyl units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号