首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
The hypernetted chain/mean spherical approximation (HNC/MSA) integral equation for a totally asymmetric primitive model electrolyte around a spherical macroparticle is obtained and solved numerically in the case of size-asymmetric systems. The ensuing radial distribution functions show a very good agreement when compared to our Monte Carlo and molecular-dynamics simulations for spherical geometry and with respect to previous anisotropic reference HNC calculations in the planar limit. We report an analysis of the potential versus charge relationship, radial distribution functions, mean electrostatic potential, and cumulative reduced charge for representative examples of 1:1 and 2:2 salts with a size-asymmetry ratio of 2. Our results are collated with those of the modified Gouy-Chapman (MGC) and unequal radius modified Gouy-Chapman (URMGC) theories and with those of HNC/MSA in the restricted primitive model (RPM) to assess the importance of size-asymmetry effects. One of the most striking characteristics found is that, contrary to the general belief, away from the point of zero charge the properties of an asymmetric electrical double layer (EDL) are not those corresponding to a symmetric electrolyte with the size and charge of the counterion, i.e., counterions do not always dominate. This behavior suggests the existence of a new phenomenology in the EDL that genuinely belongs to a more realistic size-asymmetric model where steric correlations are taken into account consistently. Such novel features cannot be described by traditional mean-field theories such as MGC, URMGC, or even by enhanced formalisms, such as HNC/MSA, if they are based on the RPM.  相似文献   

2.
In the last years, the inclusion of ionic short-range correlations in the study of colloidal stability has led to significant disagreements with the predictions obtained from classical treatments. An example of these discrepancies is the occurrence of charge reversal of charged particles. In order to shed light on this issue, the charge reversal of latex particles in the presence of asymmetric electrolytes has been investigated through Monte Carlo (MC) simulations. In particular, experimental results concerning electrophoretic mobility reversals and the Hyper-Netted-Chain/Mean-Spherical-Approximation (HNC/MSA) predictions have been compared with simulations in which two alternative methods for evaluating energies have been applied. A realistic hydrated ion size is used in the HNC/MSA calculations and simulations. In this way, the existence of a reversal in the electrophoretic mobility due to ion size correlations and without requiring specific counterion adsorption is probed. Moreover, the simulations appears as a useful tool for explaining those results in which the HNC/MSA does not reproduce the experimental trends.  相似文献   

3.
A study of a planar electric double layer (EDL) in the presence of mixtures of electrolyte is presented. In particular, results from the Hyper-Netted-Chain/Mean-Spherical-Approximation (HNC/MSA) theory are compared with Monte Carlo (MC) simulations. In this way, the charge inversion induced by mixtures of multivalent and monovalent counterions is probed. Since overcharging phenomena in nature emerge under such conditions, the role of ion-ion correlations in the EDL appears as a crucial point in this kind of study. Unlike previous related works, a realistic hydrated ion size is used in the HNC/MSA calculations and simulations. In this way, a qualitative agreement between the results obtained from the theory and MC simulations is found. However, some discrepancies arise when the charge inversion is expected to be more noticeable, namely at high surface charges and/or elevated concentrations of multivalent electrolytes. Such differences are explained in terms of an overestimation of the charge inversion by the integral equation (IE) formalism.  相似文献   

4.
Various combinations of the hypernetted chain (HNC) equation with the mean spherical approximation (MSA) and the Percus-Yevick (PY) equation are compared both for a well-known aqueous 2-2 electrolyte model solution and for real acetonitrile solutions. Belloni's self-consistency test shows that classical HNC calculations yield the best compressibility data for the two systems despite an apparently unrealistic g++ maximum in the case of the aqueous solution. Effective concentration-dependent potentials making use of the dependence of the solution permittivity on electrolyte concentration are used for HNC calculations of osmotic coefficients for methanol solutions.  相似文献   

5.
Standard Monte Carlo simulations are carried out to assess the accuracy of theoretical predictions for the structural properties of a model fluid interacting through a hard-core two-Yukawa potential composed of a short-range attractive well next to a hard repulsive core, followed by a smooth, long-range repulsive tail. Theoretical calculations are performed in the framework provided by the Ornstein-Zernike equation, solved either analytically with the mean spherical approximation (MSA) or iteratively with the hypernetted-chain (HNC) closure. Our analysis shows that both theories are generally accurate in a thermodynamic region corresponding to a dense vapor phase around the critical point. For a suitable choice of potential parameters, namely, when the attractive well is deep and/or large enough, the static structure factor displays a secondary low-Q peak. In this case HNC predictions closely follow the simulation results, whereas MSA results progressively worsen the more pronounced this low-Q peak is. We discuss the appearance of such a peak, also experimentally observed in colloidal suspensions and protein solutions, in terms of the formation of equilibrium clusters in the homogeneous fluid.  相似文献   

6.
The hypernetted-chain (HNC) Ornstein-Zernike integral equations are used to determine the properties of simple models of colloidal solutions where the colloids and ions are immersed in a solvent considered as a dielectric continuum and have a size ratio equal to 80 and a charge ratio varying between 1 and 4000. At an infinite dilution of colloids, the effective interactions between colloids and ions are determined for ionic concentrations ranging from 0.001 to 0.1 mol/l and compared to those derived from the Poisson-Boltzmann theory. At finite concentrations, we discuss on the basis of the HNC results the possibility of an unambiguous definition of the effective interactions between the colloidal molecules.  相似文献   

7.
Numerical data on the potential of mean force W(r) at infinite dilution of a highly charged colloid pair embedded in a 1:1 electrolyte are reported. The authors obtain attractive minima (W<0) at short interparticle distance in these potential functions in hypernetted chain (HNC) approximation, as salt concentration is increased. These minima, however, disappear in all system sets studied when a self-consistent Zerah-Hansen (ZH) closure is used. The authors infer that the attractive minima obtained in a HNC closure are spurious and result from the neglect of bridge diagrams in HNC approximation. An expression of bridge function, which the ZH closure in effect incorporates in W(r) to remove attractive minima, is derived in terms of modification of correlation functions. Features of repulsive pair potentials obtained using the ZH closure, their dependence on particle charge and salt concentration, and their agreement with those of the Derajguin-Landau-Verwey-Overbeek theory are investigated.  相似文献   

8.
9.
《Chemical physics》1987,111(2):223-240
A local HNC/MSA approximation is developed and applied to the 1:1 restricted primitive model electrolyte. Improvement of ion density profiles in front of a charged electrode is achieved by employing ion—ion direct correlation functions from homogeneous systems of non-neutral composition as found locally in the inhomogeneous double layer. This approximation is related to the density functional approach for inhomogeneous fluids. The local HNC/MSA method predicts, at higher surface charges, layering of counterions and charge inversion as seen in Monte Carlo data, a strong increase of the surface potential with charging and a maximum in the double layer capacitance.  相似文献   

10.
The temperature and density dependence of the molecular and thermodynamic properties of water is investigated theoretically by means of the ab initio electronic structure theory combined with the reference interaction site model method, so-called RISM-SCF. We consider the autoionization process (H2O + H2O right harpoon over left harpoon H3O+ + OH-) by regarding H2O, H3O+, and OH- as "solute" molecules in an aqueous solution and evaluate molecular geometry, electronic structure, solvation structure, and the ionic product of water (pKw) of these species as functions of thermodynamic conditions. In our previous paper, we calculated these properties by using essentially the same method in a wide range of density values (0.6-1.4 g/cm3). However, the calculation was limited at rather higher density (>0.6 g/cm3) due to the difficulty of convergence, which is inherent to the hypernetted-chain (HNC) closure. The problem is overcome in this study by employing the Kovalenko-Hirata (KH) closure which hybridizes the HNC and the mean-spherical approximation (MSA). Here, we present the results for the thermodynamic range of densities from 0.025 to 1.0 g/cm3 and for temperatures from 300 to 800 K including the supercritical point.  相似文献   

11.
The formation of intracellular dimethylselenide (DMSe) as a product of exposure of non-malignant (PBMCs) and lymphoma (RL and DHL-4) cell lines to methylseleninic acid (MSA) at clinical levels is suggested here for the first time. This was achieved by analysis of cell lysates by HPLC coupled to ICP-MS via APEX-Q nebulisation, enabling limits of detection for target methyl-Se species which are up to 12-fold lower than those obtained with conventional nebulisation. Methyl-Se-glutathione (CH3Se-SG), although detected in lysates of cells exposed to MSA, was found to be a reaction product of MSA with glutathione. This was confirmed by HPLC-ESI MS (MS) analysis of lysates of control cells (unexposed to Se) spiked with MSA. The MS/MS data obtained by collision-induced dissociation fragmentation of the ion m/z 402 (for [M+H]+ 80Se) were consistent with the presence of CH3Se-SG. Formation of DMSe was not detected by HPLC-ICP-MS in these spiked lysates, and it was found to require live cells in cell media containing MSA. Interestingly, the ratio of DMSe to CH3Se-SG was significantly higher in lymphoma cells exposed to MSA in comparison to non-malignant cells. Moreover, maximum Se uptake levels in lymphoma cell lines seemed to be reached much earlier (after 10 min of MSA exposure) than in non-malignant cells. Finally, the GC-TOF-MS speciation data obtained for cell headspace suggested that the major Se species (dimethyldiselenide) appeared to be present in lymphoma cell headspace at significantly higher concentrations than in non-malignant cell headspace after only 10 min of exposure to MSA. Evidence for the presence of dimethylselenidesulfide in lymphoma cell headspace is also provided for the first time.  相似文献   

12.
13.
The standard HNC/MSA calculation of the ion distribution fails to describe the packing in a second layer seen in MC calculations. We describe an improved treatment which employs the particle-particle direct correlation function for non-neutral electrolyte compositions as found near the surface.  相似文献   

14.
Electrolytes confined by spherical, cylindrical, and slit-like charged nanopores are studied. Results for ionic distribution profiles, pressures of the confined fluid, and absorption isotherms are obtained through the hypernetted chain/mean spherical approximation (HNC/MSA) integral equations theory. In spherical and cylindrical geometries, an inward, non-monotonic behavior of the pressure is found as confinement increases, implying a negative compressibility. The pressure vs volume isotherms resemble liquid-vapor van der Waals-like phase transition diagrams. This effect is correlated with a charge separation inside a spherical pore previously reported (Phys. Rev. Lett., 79, 3656, 1997). Here, the mechanism of charge separation and negative compressibility are explored in detail. When compared with the slit-like pore pressure, important qualitative differences are found.  相似文献   

15.
The free-radical terpolymerization of maleic anhydride (MSA), isobutyl vinyl ether (VIBE) and anethol (ANE) at 60°C is described. These three monomers do not homopolymerize under the conditions used. Binary copolymers are only obtained from MSA and one of the two investigated donor monomers, whereas the binary copolymerization of VIBE with ANE is not possible. In all terpolymers from these three non-homopolymerizable monomers the MSA content amounts to about 50 mol-%; VIBE is about twice as reactive as ANE. The terpolymerization can formally also be described under the assumption that two binary complexes (MSA/ANE (I) and MSA/VIBE (II)) are copolymerized. For this case the reactivity ratios rI = 0,9 and rII = 1,7 are obtained.  相似文献   

16.
Ab initio calculations at the MP2/aug-cc-pVTZ level have been performed to study the cooperativity of hydrogen bonds in homoclusters (HNC–HNC–HNC and HNC–HNC–HNC–HNC) and heteroclusters (H3N–HNC–HNC and H3N–HNC–HNC–HNC). The cooperative energies in the HNC–HNC–HNC and H3N–HNC–HNC trimers are –2.05 and –2.56 kcal/mol, respectively. The result shows that the cooperativity in the heterotrimer is larger than that in the homotrimer. A similar result also happens in the tetramers. The energy decomposition scheme indicates that orbital interaction is a major contribution to the cooperative energy of N···HN hydrogen bond, whereas the electrostatic and orbital interactions to that of C···HN hydrogen bond. The effect of HNC chain length on the strength of N···HN hydrogen bond has also been considered at the MP2/aug-cc-pVDZ level. It is indicated that the interaction energy of N···HN hydrogen bond trends to be a fixed value when the HNC number tends to be infinite, and the strength of N···HN hydrogen bond is regulated mainly through the electrostatic and polarization interactions although the charge transfer interaction also has an effect on it.  相似文献   

17.
The Friedman theory of correlation functions implied by the Bjerrum theory is generalized by taking into account additional terms and by improving the basic expression for the free energy. By combining the mean spherical approximation (MSA) and the mass action law (MAL) good agreement with HNC and MC data is reached.  相似文献   

18.
MP2 calculations with the cc-pVTZ basis set were used to analyze the intermolecular interactions in ternary radical–molecule complexes between HCN(HNC) and HO(HS) species, in gas phase and in water media. Particular attention was given to parameters such as the cooperative energies and many-body interaction energies. The results indicate that hydrogen bonding between two HCN(HNC) molecules gives more stability to triads than hydrogen bonding between HCN(HNC) and OH(SH) species. The electronic properties of the complexes were analyzed using the parameters derived from the atoms in molecules methodology. The water media has an enhancing influence on the stabilities of studied clusters versus the ones obtained in gas phase.  相似文献   

19.
We have calculated an ab initio HCN/HNC linelist for all transitions up to J= 25 and 18000 cm(-1) above the zero point energy. This linelist contains more than 200 million lines each with frequencies and transition dipoles. The linelist has been calculated using our semi-global HCN/HNC VQZANO + PES and dipole moment surface, which were reported in van Mourik et al. (J. Chem. Phys. 115 (2001) 3706). With this linelist we synthesise absorption spectra of HCN and HNC at 298 K and we present the band centre and band transition dipoles for the bands which are major features in these spectra. Several of the HCN bands and many of the HNC bands have not been previously studied. Our line intensities reproduce via fully ab initio methods the unusual intensity structure of the HCN CN stretch fundamental (00(0)1) for the first time and also the forbidden (02(2)0) HCN bending overtone. We also compare the J = 1-->0 pure rotational transition dipole in the HCN/HNC ground and vibrationally excited states with experimental and existing ab initio results.  相似文献   

20.
Summary: Biodegradable amphiphilic poly(ether-anhydride) gel nanoparticles (GNPs) with a hydrophobic crosslinked core and a hydrophilic PEG shell have been prepared from amphiphilic photo-crosslinkable ether-anhydride macromers via microemulsion photo-polymerization. The properties of the GNPs, such as degradability, size and drug-loading capacity, were investigated by tailoring the length of PEG chains in macromers from 400 to 4000 and by the addition of a hydrophobic photo-crosslinkable monomer: stearic monoacrylic anhydride (MSA). TEM showed that the GNPs were spherical in shape with a core-shell structure when MSA was added. The GNPs were used as the carriers to enhance the solubility of hydrophobic drugs. Indomethacin (IND) as a model drug was entrapped in the hydrophobic crosslinked core by an in situ embedding method. Results showed that IND maintained chemically intact during the formulation process, and its dissolution rate were improved compared to those of the pure IND. The GNPs prepared from PEG macromer (molecular weight: 4000) with the addition of MSA exhibited the zero-order release behavior, which is potentially useful to control the release of hydrophobic drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号