首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Both experience and research warn that heavily loaded wheels of agricultural transport vehicles and heavy machinery may cause severe compaction damage to the farmland. A remedy consists of reducing both the wheel load and the contact pressure.Early in the 1990s, the author suggested an experimental examination of the problem of soil compaction under fully controlled conditions. The ensuing research program, which was sponsored by the Grant Agency of the Czech Republic, included a series of experiments with loaded wheels carried out in the experimental grounds of the Czech University of Agriculture and, subsequently, their physical modelling in the laboratory of the Department of Motor Vehicles, Technical faculty. This program has corroborated the idea that physical modelling under controlled conditions, complemented by an adequate evaluation procedure, has a promising potential to predict full-scale ground compaction and become a sound basis for practical measures. This paper describes the laboratory equipment, testing technique, and the way of evaluating the compaction potential of tires in terms of soil dry bulk density, leading to a Compaction Number (CN) rating of individual tires. Practically, the CN rating is supposed to be included in agricultural tire catalogues to complement the load capacity/inflation pressure values for hard ground (e.g., ETRTO specifications based on tire strength and wear).  相似文献   

2.
This paper reports about measurements of the contact area of agricultuural tires in a soil bin. Four tires of the dimensions 12.5/80-18, 13.6–28, 16.9–34 and 16.9–26 were tested on a soft sandy loam. Because the existing models for predicting the footprint are complicated, a simplified model has been established, yielding good results. Measured different contact areas of all four tires are nearly constant related to wheel load except for a small increase at higher loads. Using rated loads and applying the appropriate inflation pressure, the ground pressure of a group of similar tires in loose sandy loam is independent of the tire dimensions. Measured soil compaction under at tire a various wheel loads is compared with results obtained by a mathematical model.  相似文献   

3.
Theoretical and applied research has shown that the pressure at a point in the subsurface soil is a function of both the surface unit pressure and the extent of the area over which it is applied (total load). Thirty years ago, most of the soil compaction from vehicle traffic was in the plow layer and was removed by normal cultural practices. As equipment has increased in size and mass, machine designers have increased tire sizes to keep the soil surface unit pressure relatively constant. However, the increase in total axle loads is believed to have caused an increase in compaction at any given depth in the soil profile, resulting in significant compaction in the subsoil.Two tires of different sizes, a standard agricultural tire and a flotation tire were used to support equal loads. Soil pressures were measured at three depths in the soil profile directly beneath each of the tires. Two soils were used and each was prepared first in a uniform density profile, and then they were prepared with a simulated traffic pan (layer of higher density) at a depth of approximately 30 cm.Results showed that the presence of a traffic pan in the soil profile caused higher soil pressures above the pan and lower pressures below it than was the case for a uniform soil profile. The soil contact surface of the flotation tire was approximately 22% greater than the agricultural tire. The greater contact surface did reduce soil pressures at the soil surface, of course, but the total axle load was still the dominant factor in the 18–50 cm-depth range used in this study.  相似文献   

4.
Research was conducted to quantify the effect of tire variables (section width, diameter, inflation pressure); soil variables (soil moisture content, initial cone index, initial bulk density); and external variables (travel speed, axle load, number of tire passes) on soil compaction and to develop models to assess compaction in agricultural soils. Experiments were conducted in a laboratory soil bin at the Asian Institute of Technology in three soils, namely: clay soil (CS), silty clay loam soil (SCLS), and silty loam soil (SLS). A dimensional analysis technique was used to develop the compaction models. The axle load and the number of tire passes proved to be the most dominant factors which influenced compaction. Up to 13% increase in bulk density and cone index were observed when working at 3 kN axle load in a single pass using a 8.0–16 tire. Most of the compaction occurred during the first three passes of the tire. It was also found that the aspect ratio, tire inflation pressure and soil moisture content have significant effect on soil compaction. The initial cone index did not show significant effect. The compaction models provided good predictions even when tested with actual field data from previous studies. Thus, using the models, a decision support system could be developed which may be able to provide useful recommendations for appropriate soil management practices and solutions to site-specific compaction problems.  相似文献   

5.
Tire Compaction Capacity rating system with its CC index was evolved to support the choice of proper tires for off-road vehicles or machines operating on crop producing land with aim to prevent harmful compaction of the ground. This system, fundamentally presented in the Journal of Terramechanics, Vol. 52/2014, is based on a great number of laboratory compaction tests in common clay–loam soil (here marked as standard soil). The presented article deals especially with more accurate application of numerical rating to sandy and clay soils (very different grain size) under the designation equivalent Compaction Capacity (eCC) index, however, is applicable to an arbitrary soil type. The features and practical use of eCC rating are explained and discussed in this technical note.  相似文献   

6.
Four tire types (A, block-shape tread; B, rib-shape tread; C, low-lug tread; D, high-lug tread) used to harvest and transport sugarcane were compared regarding the compaction induced to the soil. Tires were tested at three inflation pressures (207, 276, 345 kPa) and six loads ranging from 20 to 60 kN/tire. Track impressions were traced, and 576 areas were measured to find equations relating inflation pressure, load, contact surface and pressure. Contact surface increased with increasing load and decreasing inflation pressure; however, the contact pressure presented no defined pattern of variation, with tire types A and B generating lower contact pressure. The vertical stresses under the tires were measured and simulated with sensors and software developed at the Colombian Sugarcane Research Center (Cenicaña). Sensors were placed at 10, 30, 50 and 70 cm depth. Tire types A and B registered vertical stresses below 250 kPa at the surface. These two tires were better options to reduce soil compaction. The equations characterizing the tires were introduced into a program to simulate the vertical stress. Simulated and measured stresses were adjusted in an 87–92% range. Results indicate a good correlation between the tire equations, the vertical stress simulation and the vertical stress measurement.  相似文献   

7.
Every element of a pulling traction device (e.g. track shoe with grouser or tire section with lug) exhibits increasing rearward displacement during its engagement with soft ground. Compression–Sliding (CS) approach states in agreement with experimental evidence that on common soft ground this displacement starts due to longitudinal soil compression by the grouser or lug, which steadily increases up to the transitional displacement when the soil segment beneath a driving element fails in shear. Further displacement of a driving element is marked by forced slide of a sheared off soil block, which may eventually collapse. There was justified reasoning that the transitional displacement depends not only on the grouser (lug) contact pressure but also on the area and load of the respective traction element. The presented article reports on experiments designed to test this premise. The measurements applying the novel double plate (DP) meter technique were carried out in a laboratory soil bin containing loam charge of uniform bulk density and moisture content. Three sizes (proportions 1:2:4) and two mean vertical contact pressures (ratio1:2) of DP meter main plate were tested. The analysis of performed experiments confirmed the existence of dimensional and loading relationship “main plate – transitional displacement”, which bears upon the evaluation of thrust–slip relationship of any traction device by the CS approach or by any other method observing the existence of displacement.  相似文献   

8.
Data was collected for single bundle and nucleus estate trailers aimed at selecting the trailer units that could safely travel in the sugarcane fields without causing detrimental soil compaction. The proportion of trailers carrying loads in excess of established safe axle loads was assessed. Over 60% single bundle trailers traveling in sandy loam and sandy clay loam fields were found not to induce detrimental soil compaction. Nucleus estate trailers, however, were sufficiently loaded to cause significant soil compaction. Working under soil moisture contents of 21.4–27.1% (dry basis), safe loads were found to be payloads of 64.9 and 46.1 kN carried by single bundle and nucleus estate trailers (respectively) on a single axle having two 10 ply 18.4×30 tires with an inflation pressure of 207 kPa.  相似文献   

9.
Velocity effect of vehicle rolling resistance in sand   总被引:1,自引:0,他引:1  
  相似文献   

10.
This paper demonstrates the determination of the virgin compression line parameters from initial soil density, contact pressure and resulting rut depth in uniform soil conditions for which a constant soil density change to a depth of 500 mm was obtained in soil bin experiments (whereby total soil depth was 750 mm). The density change was determined with a “non-invasive” technique determining soil displacement (strain) by placing talcum powder lines into the soil during preparation of the soil bin and measuring the change in their relative position. The soil compaction model COMPSOIL with these parameters predicted wheel rut depth to within ±5%, from which in turn an absolute soil density increase can be determined to within ±3%. The model was successfully validated against data for uniform initial densities of 1.2 g/cm3 and 1.6 g/cm3 and a simulated layered field condition. The estimation of the virgin compression line was validated in the field as well. The parameters of the virgin compression line were estimated using soil density change data for the corresponding average contact pressures of different tires with loads of 4.5–10.5 t.  相似文献   

11.
Determination of the soil pressure distribution around a cone penetrometer   总被引:2,自引:0,他引:2  
The objective of this paper was to investigate the pressure distribution around a cone penetrometer using a pressure sensing mat under laboratory conditions. The investigation was conducted under (1) constrained conditions using cylindrical split pipe molds and (2) unconstrained conditions using a soil box. These tests were conducted in Capay clay and Yolo loam soil containing two different moisture conditions and two compaction levels.In the constrained tests, a maximum radial pressure of 111 kPa was observed in the Capay clay soil with 3.4–4.3% d.b. moisture content and three blows of compaction (cone index value of 2040 kPa) when using the 41 mm diameter split pipe mold. These pressure levels decreased to 82 and 22 kPa, respectively, when 65 and 88 mm diameter molds were used. In both the Capay clay and Yolo loam tests, the average radial pressure and average cone index values showed similar trends.In the unconstrained tests, a maximum pressure of 9.0 kPa was observed in the Capay clay with 4.5% d.b. moisture content and three blows of compaction (cone index value of 550 kPa) at a horizontal distance of 25.4 mm from the vertical axis of the cone penetrometer and minimum pressure levels in the range of 0.2–0.3 kPa when the horizontal distance of the penetrometer was in the range of 56.8–66 mm. The pressure levels are much smaller than the ones obtained in the constrained tests and may suggest that the pressure distribution under field conditions is small at a distance of 25.4 mm or higher from the tip of the cone.The experimental data were statistically analyzed to identify significant factors. The results of the analysis for the constrained test indicated that the mold diameter and number of blows significantly increased the pressure readings within the soil mass. Increasing the mold diameter led to a decrease in the average radial pressure and increasing the number of blows contributed to an increase in the average radial pressure. In the unconstrained test, the average radial pressure distribution at a given point were significantly influenced by the horizontal distance of the point from the vertical axis passing through the center of the penetrometer shaft, soil type, and soil moisture content. Higher pressure values were obtained in the Capay clay tests compared to the Yolo loam tests. In all cases, the pressure levels were greater for the drier soil than for the moist soil.  相似文献   

12.
Mathematical models to predict the mode and extent of deformation occurring below sinkage plates are presented in the first part of this paper which encompasses the theoretical approach to the subject. These models are based on previous work by Earl (Earl R. Assessment of the behaviour of field soils during compression. Journal of Agricultural Engineering Research 1997;68:147–57)who developed a procedure to predict the likely mode of deformation using confined compression tests carried out alongside plate sinkage tests. This work suggested that soil behaviour, during increasing compression under a sinkage plate, is governed by three processes; (i) compaction below the plate with constant lateral stress, (ii) compaction with increasing lateral stress, and (iii) displacement and compaction of soil laterally. The aim of this second part to the paper is to observe soil deformation processes occurring below a circular sinkage plate to examine (i) whether the three phases of deformation referred to above occur in practice, and (ii) the accuracy of the models for predicting the soil deformation processes that occur. Tests were carried out on sandy loam soil under controlled conditions in a soil bin. Observations of deformation processes, recorded using long-exposure photography, revealed that during the initial stages of sinkage (a few millimetres), the corresponding disturbance of soil below the plate extended disproportionately further and was cylindrical in form. As sinkage progressed, the deformation process went through a transitional stage before reaching the more widely recognised form of the development of an inverted cone of compacted soil directly below the plate which moved with the plate causing lateral soil movement and compaction. Predictions for a medium density sandy loam were found to be in broad agreement with soil behaviour under a semi-circular sinkage plate observed behind a sheet of tempered glass under controlled conditions in a soil tank.  相似文献   

13.
Studies were conducted for the establishment of safe axle loads for sugarcane hauling vehicles beyond which detrimental soil compaction would be induced. The treatments involved running a loaded test vehicle in field strips previously chosen at random. Safe loads were established by testing the level of significance of the difference in induced soil compaction between treated and non-treated sections. Working under soil moisture contents of 21.4–27.1% (dry basis), safe axle loads for two 18.4 × 30 tires were found to be 55.6 and 60.0 kN for sandy clay loam and sandy loam soils with initial dry bulk density about 1.434 g/cm3. These corresponded to ground contact pressures of 111 and 120 kPa, respectively.  相似文献   

14.
为加固新近吹填的处于流塑状态的粉土地基,首先采用轻型井点降水和动力碾压的方法使地基具有一定的初始承载力。然后,施加较大的强夯动力荷载,从而使地基承载力得到显著提高。这一新的综合加固技术称之为“预排水动力固结法”。通过现场测试,研究了施工过程中诸如井点降水的影响范围、强夯时孔隙水压力的变化范围、深层沉降的变化等问题。同时,对强夯夯击遍数、每点夯击次数、遍与遍之间的间隙时间等有关问题进行讨论。研究表明,预排水动力固结法可显著提高吹填粉土地基的承载力。  相似文献   

15.
Driving gear of a vehicle (here a track) generates thrust as a reaction to the opposite force taken by the ground. This force causes rearward soil deformation, which is associated with vehicle slippage. The presented compression–sliding (CS) approach, based on field measurements with the original double plate (DP) meter, states that the soil deformation as a consequence to the increasing thrust occurs in two principal stages: (a) primary horizontal soil compression, which steadily increases towards the back of the contact length forming virtual soil segments among neighboring grousers and (b) secondary slide of these sheared off segments referred to as soil blocks, which may collapse under specific conditions. These two stages are separated by a transient situation when both the compression and sliding occur simultaneously.The respective compression–sliding (CS) approach enables to analyze the effect of track arrangement, design and loading on its thrust–slip characteristics. The paper also deals with situation of the existing shear plane theory in view of the CS approach and finally suggests a practical thrust–slip function complying with the CS logic.  相似文献   

16.
Dimensional variations of pneumatic tires influence off-road locomotion and more particularly their aptitude for the transmission of high propulsive torques to the tire-soil contact area.Height variation of the tire when load increases is linear and allows a classification of the casings by means of the angular coefficients for the straight lines expression this relationship.Variation in the level where the enlarging of the torus is maximum is directly connected with the applied load and inversely proportional to the inflation pressure. Ply rating and inflation pressure define a stiffness coefficient for a tire, while the ratio of height to width under load specifies a deformation coefficient, a squash rate and a flattening rate. These three parameters characterize the elasticity of the tire and so are connected to the effective tire-soil contact areas.Compressive effects of the vertical stress as well as the transmitted torques are in relation with tire deformability. The study points to the need for better specification of the parameters for the choice, or for the definition of the desired characteristics for manufacturing, of tires.Experiments already done on superficial compaction effects concluded with a new type of cross section for the tire called the camel shoe.  相似文献   

17.
Studies comparing the structural differences of tires have not qualitatively or quantitatively considered the effects of tread geometry on tire behaviour or the interactions of the tire with the surface. Therefore, to determine the effects of different tire tread patterns on the stress distribution of the tire and soil compaction, we compared the structural behaviours of a high-flotation tractive-tread (TT) tire and a smooth-tread (ST) tire. The experiments were conducted over a rigid and over a deformable surface. The results from the rigid surface shows the influences of the tread pattern and sidewalls is dependent of the loads. Over the deformable surface, the contact area of the TT tire was larger than that of the ST tire. The inflation pressure (IP) was mainly responsible for the load support before the soil reached its maximum deformation. Next, the tread and sidewalls exhibited the same behaviour as observed on the rigid surface. In addition, we observed alterations in the balloon point with the tread geometry and the type of surface due to changes in the contact pressure. With carcass deformation, the volume of the tire was visibly reduced, which indicated that the IP could increase.  相似文献   

18.
Tyre traffic over soil causes non-uniform ground pressures across the tyre width and along the soil–tyre contact area. The objective of this paper was to obtain in the topsoil the shape, magnitudes, distribution and transmission in depth of the ground pressures from a finite element model of soil compaction. The influence of tyre inflation pressure, tyre load and soil water content over the pressures propagation in the soil was analysed. The model shows how to low inflation pressure the tyre carcass supports most of the total load and the biggest peak pressures are distributed in the tyre axes when it traffics over firm soil. For high inflation pressure the incremented stiff causes that pressure is distributed with parabolic shape. In wet soil the inflation pressure does not influence on the ground pressure distribution, this depends only on the tyre load. The inflation pressure and tyre load changed the shape of the vertical pressures distribution on the surface of a hard dry soil, but these variables did not affect the distribution of vertical stresses in a soft wet soil or below a depth of 0.15 m.  相似文献   

19.
Tire lateral force data on winter surfaces cannot be obtained with the traditional laboratory test technique of an instrumented tire on a moving belt surface. Furthermore, changing snow and ice conditions can drastically change the tire/surface interaction. In this study the Cold Regions Research and Engineering Laboratory’s (CRREL’s) Instrumented Vehicle (CIV) was used in a unique configuration to measure tire lateral force versus slip-angle data on ice and snow at various temperatures, moisture contents, depths, and densities. The vehicle is instrumented to record longitudinal, lateral, and vertical force at the tire contact patch of each wheel as well as vehicle speed, tire speed, and front tire slip angle. The tests were conducted at the Keweenaw Research Center (KRC) in northern Michigan in February 2005 and March 2006. Tests were conducted on ice, packed snow from 0.50 to 0.58 g/cc, remixed snow depths of 2.5–20.3 cm at 0.43 to 0.48 g/cc and freshly fallen snow with depths of 0.5–17 cm at 0.07 to 0.23 g/cc. Surface air temperatures during testing ranged from −14 to 1.6 °C. The data collected show that peak lateral force and the shape of the lateral force versus slip-angle curve are related to snow properties and depths.  相似文献   

20.
The vertical response characteristics of several tire models were mathematically analysed by computer program. The results from the computation were compared with those from experiments. The tire models mentioned in this paper are evaluated. Finally, a modified point contact tire model has been proposed. The validity of it was then examined by experiment with tires 6.50–16 and 6.50R16.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号