首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
温度调控表面活性剂溶液有序结构转变研究新进展   总被引:2,自引:0,他引:2  
尹海清  黄建滨 《物理化学学报》2005,21(11):1324-1330
总结了近年来在温度调控表面活性剂有序结构转变研究方面的新进展. 主要介绍了囊泡的相转变, 温度诱导的胶束/囊泡转化, 离子表面活性剂胶束体系中的浊点现象, 温度控制的囊泡聚集以及温度诱导液晶相的形成与转化等五个方面的相关工作.  相似文献   

2.
环境因素对正负表面活性剂体系相行为的影响   总被引:3,自引:0,他引:3  
在1:1正负离子表面活性剂混合体系(十二烷基硫酸钠/辛基三甲基溴化铵 SDS-C8NM3Br; 十二烷基硫酸钠/十二烷基三甲基溴化铵,SDS-C12NM3Br)中加入短链脂肪醇 (乙醇,正丙醇,正丁醇),正负离子表面活性剂沉淀溶解,出现表面活性剂双水相.上相有液晶存在,下相有囊泡自发形成.折光率数据和电镜结果表明:上相为表面活性剂富集相,下相表面活性剂浓度较低.混合体系中,出现表面活性剂双水相所需短链脂肪醇的体积百分数,随短链脂肪醇的链长增加而降低.温度升高,出现表面活性剂双水相所需短链脂肪醇的体积百分数降低.对SDS/C8NM3Br/H2O体系的研究结果表明:超声处理,可使混合体系中沉淀向囊泡转化,与短链脂肪醇的加入后的作用类似.  相似文献   

3.
通过电子显微镜观察了阴离子gemini表面活性剂C11- p-PhCNa和阳离子传统表面活性剂DTAB混合体系双水相中囊泡形貌随体系组成和浓度的转变。结果表明,双水相较浓的一相中形成了多层囊泡,囊泡的大小和壁厚随相的组成和浓度而改变,两组分等电荷混合有利于形成较大且壁较厚的囊泡。分析表明, gemini表面活性剂在聚集体中采取的反式构象可能是其容易形成厚壁多层囊泡的重要原因,C11- p-PhCNa联接链上的苯氧基与DTA+之间的p-阳离子相互作用以及两组分相反电性头基之间的静电吸引使囊泡壁的多层结构更加稳定。  相似文献   

4.
在无盐时, 阴离子表面活性剂十二烷基苯磺酸钠(SDBS)与非离子表面活性剂壬基酚聚氧乙烯(10)醚(TX-100)的复配体系中只有混合胶束存在, 而盐的加入即可以引发体系中囊泡的自发形成, 这使得囊泡的形成变得更加简单. 引发机理可以归因于盐对离子表面活性剂的极性头双电层的压缩作用, 减少了极性头的面积, 加上非离子表面活性剂的参与使得堆积参数P增加, 导致了半径更大的聚集体的形成. 制作了SDBS/TX-100/盐水拟三元相图, 通过目测和表面张力的变化确定了囊泡形成的带状区域, 并用负染色电镜(TEM)对囊泡进行了表征, 同时测定了盐度以及相同盐度下表面活性剂浓度对囊泡粒径的影响, 发现囊泡的粒径随着盐度的增加而增加, 而在同一盐度下, 囊泡的粒径基本不受表面活性剂浓度的影响.  相似文献   

5.
寡聚表面活性剂是由2个或2个以上单头单链的表面活性剂在头基处或靠近头基处由连接基团通过化学键连接而成的二聚、三聚、四聚乃至更高寡聚度的分子.Gemini表面活性剂(二聚表面活性剂)是最简单,也是最早被发现的寡聚表面活性剂,已经被大量报道.已有综述很好地总结了Gemini表面活性剂的物理化学性质.本文主要综述三聚及三聚以上寡聚表面活性剂的研究进展,包括寡聚表面活性剂的合成和结构、表/界面性质以及溶液中的聚集行为等,以期使研究者比较全面地认识寡聚表面活性剂领域的研究进展.  相似文献   

6.
正负离子表面活性剂混合体系中高稳定性囊泡的形成   总被引:4,自引:1,他引:4  
韩峰  付宏兰  何潇  黄建滨 《化学学报》2003,61(9):1399-1404
对总浓度为0.01 mol/L,摩尔比为2:1的十二烷基硫酸钠/溴化十二烷基三乙 铵的正负离子表面活性剂混合体系形成的囊泡的稳定性进行了研究。发现这一体系 形成的囊泡在长放置(5个月)后依然存在。在加入较大量的无机盐(0.15 mol/L NaBr)、较大幅度pH变化(pH = 2~12)、温度变化(从80 ℃到-22 ℃)情况下 体系中的囊泡依然呈现出优异的稳定性。在非水溶剂乙醇(100%)中这类正负离子 表面活性剂仍然可以形成囊泡。  相似文献   

7.
碳纳米管修饰金电极检测特定序列DNA   总被引:7,自引:0,他引:7  
唐婷  彭图治  时巧翠 《化学学报》2005,63(22):2042-2046
利用化学偶联法将末端修饰氨基的寡聚核苷酸固定在表面修饰有羧基化碳纳米管(CNTs-COOH)的金电极表面, 制备新型核酸探针, 可以特异性结合目标单链寡聚核苷酸. 以阿霉素作为嵌合指示剂, 利用示差脉冲法测定杂交的结果. 经过实验条件的优化, 测定DNA浓度在1.0×10-6~1.0×10-9 mol/L呈良好的线性关系. 检测限为: 2.54×10-10 mol/L. 碳纳米管特有的纳米结构对检测结果的放大作用, 提高了该传感器的检测限和灵敏度.  相似文献   

8.
应用纳米磁性球电化学检测特定序列DNA   总被引:17,自引:0,他引:17  
采用分散聚合法制备纳米磁性羧基球,利用化学偶联法将末端修饰氨基的寡聚核苷酸固定在纳米磁性球表面,制成新型核酸探针,该探针可特异性结合目标单链寡聚核苷酸.在磁场作用下,将纳米磁珠与本体溶液分离并富集在电极表面,以中性红为嵌合指示剂,用示差脉冲伏安法测定杂交结果.经过条件优化,本法测定DNA的浓度线性范围为1.0×10-6~5.0×10-9mol/L,检出限为8.6×10-10mol/L.  相似文献   

9.
首次报道在短链脂肪醇/水溶剂中十二烷基硫酸钠和辛基三甲基溴化铵混合体系由沉淀转化为囊泡,并出现表面活性剂双水相的新现象,以期探索正负离子表面活性剂混合体系研究的新途径。  相似文献   

10.
利用冷冻刻饰电子显微镜(FF-TEM)技术研究了两亲分子溶液不同有序聚集体的结构, 特别对一些两亲分子溶液体系形成的泡囊结构进行了详细的研究, 探讨了聚集体结构的演变规律. 对无剪切力下化学反应诱导L3-相(海绵相)到层状Lα-相, 手振荡层状Lα-相到多双层泡囊相及高剪切力作用下多双层泡囊相到单双层泡囊相的结构演变进行了冷冻刻饰电子显微镜追踪研究. 首次报道了-诱导的单链长表面活性剂溶液中泡囊相的形成.  相似文献   

11.
In the present study, we found that plasmid DNA could induce single-chained cationic surfactants cetyltrimethylammonium bromide (CTAB), dodecyltrimethylammonium bromide (DTAB), and dodecyltriethyl ammonium bromide (DEAB) to form vesicles once its concentration reached a critical value. Moreover, the gene for follicle-stimulating hormone was delivered into cells with these single-chained cationic surfactant/DNA vesicles and the transfection efficiency was comparable to that with lipofectamine? 2000, a famous and widely used commercial transfection reagent, and also to that using electroporation method, although it was generally thought conventional single-chained cationic surfactant was not suitable for gene transfer. The conventional single-chained cationic surfactant is very cheap and stable and the vesicles are very easy to be prepared. Thereby, this study may suggest that the vesicles formed between plasmid DNA and surfactant should be prospective to transfer DNA.  相似文献   

12.
The interaction between DNA and surfactant has both biological and technological significances. Recently, we reported for the first time that oligo d(C)25 can induce single‐chained cationic surfactant molecules to aggregate into vesicles. In this article, we studied systematically the formation of vesicles from traditional single‐chained cationic surfactant molecules in the presence of a series of oligonucleotides and found that the facilitation efficiency of oligonucleotide on vesicle formation depends on its size and base composition. Oligo d(T)n cannot induce vesicle formation, whereas the other oligonucleotides can. Moreover, the oligonucleotide with a bigger size or with a hairpin structure favors vesicle formation more, and the increases in the size of the head group and/or the length of the alkyl group of surfactant decrease the facilitation efficiency of oligonucleotide. Since so far, there is very limited report about the vesicle formation in DNA/single‐chained cationic surfactant solution, this study could be expected to increase the efficiency and applicability for DNA/amphiphile system. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 434–449, 2009  相似文献   

13.
Prof. Dr. Xia Guo  Bo Cui 《中国化学》2010,28(11):2130-2136
Recently, we reported for the first time that oligonucleotide could induce single‐chained cationic surfactant molecules to aggregate into vesicles and the facilitative efficiency of oligonucleotide on vesicle formation was dependent on its size and sequence. In the present paper, we will continue to study the effects of acid and base on the facilitative efficiency of oligonucleotide on vesicle formation. It is found that proton ions show little effect on the facilitative efficiency while hydroxide ions make it decreased. Moreover, the percentage of oligonucleotide involved in vesicle formation in basic solution is much lower than that in acidic solution (which is almost equal to that in water). Since the structures and properties of DNA/amphiphile complex are very important for its application as nonviral gene carrier, this study may provide some helpful information for gene therapy.  相似文献   

14.
Vesicles have many important applications in many different fields. In the present paper, we report for the first time that oligonucleotide can induce single-chained cationic surfactant molecules to aggregate into vesicles by determining turbidity with a Uv-vis spectrophotometer, observing images with a transmission electron microscope and/or fluorescence microscope, and dynamic light scattering. This study may increase the efficiency and applicability for a DNA/amphiphile system.  相似文献   

15.
The gelation of mixed cationic/anionic surfactant vesicles of sodium dodecyl sulfate/didodecyldimethylammonium bromide and sodium dodecylbenzenesulfonate/cetyltrimethylammonium tosylate by hydrophobically modified sodium polyacrylate is studied rheologically. When the vesicles are cationically charged, mixtures with this anionic polyelectrolyte form precipitates. When the vesicles are anionically charged, however, these mixtures display a progression from a Maxwell fluid to a critical gel to a solidlike gel with increasing vesicle and/or polyelectrolyte concentration. Consideration of the viscous behavior with increasing vesicle and polymer volume fraction indicates that the gel network is formed by the bridging of the hydrophobically modified polymer between vesicles. The similarity between the gelation results for the two anionic systems suggests the results can be generalized to other similarly charged mixtures.  相似文献   

16.
Sodium dodecyl sulfate (SDS)/dodecyl triethyl ammonium bromide (DEAB) mixed micelles (with SDS in excess) can transform to vesicles only when the temperature is higher than a critical value. In this study, we report for the first time that oligonucleotide can decrease the critical temperature to a much lower value and, hence, induce micelle‐to‐vesicle transition. The facilitation efficiency of oligonucleotide on vesicle formation is closely dependent on its size and base composition. Moreover, the SDS/DEAB/oligonucleotide vesicles are negatively charged and the hydrophobic interaction between oligonucleotide and SDS/DEAB mixed micelles is the driving force. As, so far, the report about the facilitation effect of oligonucleotide and DNA on vesicle formation is very limited, this study may provide some helpful information for the application of DNA/amphiphile system. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7491–7504, 2008  相似文献   

17.
Recently, we found oligodeoxynucleotide could induce single‐chained cationic surfactant to organize into vesicles. In this article, we will report the effects of NaCl and temperature on the surfactant/oligodeoxynucleotide vesicle formation. A moderate content of NaCl can facilitate vesicle formation and high content of NaCl makes vesicle degraded. The enhanced hydrophobic interaction between surfactant and oligodeoxynucleotide with NaCl plays a key role for facilitating vesicle formation. Moreover, surfactant/oligodeoxynucleotide vesicles tend to aggregate at high temperature and the change is irreversible. However, the presence of NaCl makes this change reversible. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

18.
Two routes to vesicle formation were designed to prepare uni- and multilamellar vesicles in salt-free aqueous solutions of surfactants. The formation of a surfactant complex between a double-chain anionic surfactant with a divalent-metal ion as the counterion and a single-chain zwitterionic surfactant with the polar group of amine-oxide group is described for the first time as a powerful driving force for vesicle-phases constructed from salt-free mixtures of aqueous surfactant solutions. As a typical example, a Zn(2+)-induced charged complex fluid, vesicle-phase has been studied in aqueous mixtures of tetradecyldimethylamine oxide (C(14)DMAO) and zinc 2,2-dihydroperfluorooctanoate [Zn(OOCCH(2)C(6)F(13))(2)]. This ionically charged vesicle-phase formed due to surfactant complexation has interesting rheological properties and is not shielded by excess salts because there are no counterions in the solution. Such a vesicle-phase of surfactant complex is important for many applications; for example, the vesicle-phase was further used to produce in situ the vesicle-phase of the salt-free cationic/anionic (catanionic) surfactants, C(14)DMAOH(+)-(-)OOCCH(2)C(6)F(13). The salt-free catanionic vesicle-phase could be produced through injecting H(2)S gas into the C(14)DMAO/Zn(OOCCH(2)C(6)F(13))(2) vesicle-phase, because the zwitterionic surfactant C(14)DMAO can be charged by the H(+) released from H(2)S to become a cationic surfactant and Zn(2+) was precipitated as ZnS. After the ZnS precipitates were removed from C(14)DMAO/Zn(OOCCH(2)C(6)F(13))(2) solutions, the final mixed solution does not contain excess salts as do other cationic/anionic surfactant systems. Both the C(14)DMAO-Zn(OOCCH(2)C(6)F(13))(2) complex and the resulting catanionic C(14)DMAOH(+)-(-)OOCCH(2)C(6)F(13) solution are birefringent Lalpha-phase solutions that consist of uni- and multilamellar vesicles. Ring-shaped semiconductor ZnS materials with encapsulated ZnS precipitates and regular spherical ZnS particles were prepared, which resulted in a transition from vesicles composed of metal-ligand complexes to vesicles held together by ionic interactions in the salt-free aqueous systems. This strategy should provide a new method to prepare inorganic materials. The present routes to form vesicles solve a problem: how to prepare nanomaterials using surfactant self-assembly, with structure controlled not by the growing material, but by the phase behavior of the surfactants.  相似文献   

19.
Recently,we reported that deoxyribo-oligonucleotides could induce single chained cationic surfactant aggregation to form vesicles.In this paper,we will present that ribo-oligonucleotides can also induce vesicle formation,and compared with deoxyribo-oligonucleotides,ribo-oligonucleotides exhibit a higher inductive efficiency.  相似文献   

20.
In nonequimolar solutions of a cationic and an anionic surfactant, vesicles bearing a net charge can be spontaneously formed and apparently exist as thermodynamically stable aggregates. These vesicles can associate strongly with polymers in solution by means of hydrophobic and/or electrostatic interactions. In the current work, we have investigated the rheological and microstructural properties of mixtures of cationic polyelectrolytes and net anionic sodium dodecyl sulfate/didodecyldimethylammonium bromide vesicles. The polyelectrolytes consist of two cationic cellulose derivatives with different charge densities; the lowest charge density polymer contains also hydrophobic grafts, with the number of charges equal to the number of grafts. For both systems, polymer-vesicle association leads to a major increase in viscosity and to gel-like behavior, but the viscosity effects are more pronounced for the less charged, hydrophobically modified polymer. Evaluation of the frequency dependence of the storage and loss moduli for the two systems shows further differences in behavior: while the more long-lived cross-links occur for the more highly charged hydrophilic polymer, the number of cross-links is higher for the hydrophobically modified polymer. Microstructure studies by cryogenic transmission electron microscopy indicate that the two polymers affect the vesicle stability in different ways. With the hydrophobically modified polymer, the aggregates remain largely in the form of globular vesicles and faceted vesicles (polygon-shaped vesicles with largely planar regions). For the hydrophilic polycation, on the other hand, the surfactant aggregate structure is more extensively modified: first, the vesicles change from a globular to a faceted shape; second, there is opening of the bilayers leading to holey vesicles and ultimately to considerable vesicle disruption leading to planar bilayer, disklike aggregates. The faceted shape is tentatively attributed to a crystallization of the surfactant film in the vesicles. It is inferred that a hydrophobically modified polyion with relatively low charge density can better stabilize vesicles due to formation of molecularly mixed aggregates, while a hydrophilic polyion with relatively high charge density associates so strongly to the surfactant films, due to strong electrostatic interactions, that the vesicles are more perturbed and even disrupted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号