首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The mechanism of peristaltic magnetohydrodynamic (MHD) flow based on slip and heat transfer effects is studied in an asymmetric channel. An incompressible viscous fluid fills the porous space inside the channel. Long wavelength and zero Reynolds number approximation are used in the flow modeling. Expressions of stream function, longitudinal pressure gradient, and temperature are developed. Various interesting phenomena associated with peristalsis, such as pumping and trapping, are discussed in detail. Further the effects of various pertinent parameters on temperature field and heat transfer coefficient are explained with the help of graphs and tables. It is found that pressure rise over one wavelength decreases in pumping region for large values of slip parameter. Similar behavior is observed for temperature field by increasing the slip parameter. However, the volume of trapped bolus decreases by increasing the slip parameter. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
In this work, the transient incompressible Couette flow and steady-state temperature profiles between two porous parallel plates for slightly rarefied gases are solved exactly. The first-order approximation of slip velocity at the boundaries is used in the formulation. The solution is also applicable for Couette flow in micro-channels under certain circumstances. The influences of mass transfer and a nondimensional slip parameter on slip velocities are discussed. It is also found that the transient slip velocities at the walls are greatly different from the steady-state velocity slips. The influences of velocity slip and temperature slip parameters on the temperature distribution and heat transfer at the walls are analyzed and discussed. It is shown that the slip parameters can greatly change the temperature profiles and heat transfer characteristics at the walls.  相似文献   

3.
In this paper, viscous flow and heat transfer over an unsteady stretching surface is investigated with slip conditions. A system of non-linear partial differential equations is derived and transformed to ordinary differential equations with help of similarity transformations. Numerical computations are carried out for different values of the parameters involved and the analysis of the results obtained shows that the flow field is influenced appreciably by the unsteadiness, and the velocity slip parameter. With increasing values of the unsteadiness parameter, fluid velocity and the temperature are found to decrease in both the presence and absence of slip at the boundary. Fluid velocity decreases due to increasing values of the velocity slip parameter resulting in an increase in the temperature field. Skin-friction decreases with the velocity slip parameter whereas it increases with unsteadiness parameter. The rate of heat transfer decreases with the velocity slip parameter while increases with unsteadiness parameter. Same feature is also noticed for thermal slip parameter.  相似文献   

4.
This study explores the effects of electro-magneto-hydrodynamics, Hall currents, and convective and slip boundary conditions on the peristaltic propulsion of nanofluids(considered as couple stress nanofluids) through porous symmetric microchannels. The phenomena of energy and mass transfer are considered under thermal radiation and heat source/sink. The governing equations are modeled and non-dimensionalized under appropriate dimensionless quantities. The resulting system is solved numerically w...  相似文献   

5.
The axisymmetric laminar boundary layer flow along the entire length of a semi-infinite stationary cylinder under an accelerated free-stream is investigated. Considering flow at reduced dimensions, the boundary layer equations are developed with the conventional no-slip boundary condition for tangential velocity and temperature replaced by a linear slip-jump boundary condition. Asymptotic series solutions are obtained for the heat transfer coefficient in terms of the Nusselt number. These solutions correspond to prescribed values of the momentum and temperature slip coefficients and the index of acceleration. Heat transfer at both small and large axial distances is determined in the form of series solutions; whereas at intermediate distances, exact and interpolated numerical solutions are obtained. Using these results, the heat transfer along the entire cylinder wall is evaluated in terms of the parameters of acceleration and slip.  相似文献   

6.
Direct contact heat transfer between water and a heat transfer oil was investigated under non-boiling conditions in co-current turbulent flow through a horizontal concentric annulus. The ratio of the inner pipe diameter to the outer pipe diameter (aspect ratio) κ = 0.730−0.816; total liquid velocity (mixture velocity) VT = 0.42−1.1 m/s; inlet oil temperature Toi = 38−94°C; oil volume fraction in the flowing mixture φo = 0.25−0.75 were varied and their effects on the overall volumetric heat transfer coefficient Uv were determined at constant interfacial tension of 48 dynes/cm.

It was found that, in each concentric pipe set, the overall volumetric heat transfer coefficient increased with increasing dispersed phase volume fraction at each constant mixture velocity and reached a maximum at around φo = φw ≈ 0.5. The maximum Uv values increased with increasing total liquid velocity and decreasing aspect ratio of the annulus. The volumetric heat transfer coefficient was also found to increase with increasing inlet oil temperature and increasing total liquid velocity but to decrease with length along the test section keeping all other parameters constant. Empirical expressions for the volumetric heat transfer coefficient were obtained within the ranges of the experimental parameters.  相似文献   


7.
The influence of partial slip, thermal radiation and temperature dependent fluid properties on the hydro-magnetic fluid flow and heat transfer over a flat plate with convective surface heat flux at the boundary and non-uniform heat source/sink is studied. The transverse magnetic field is assumed as a function of the distance from the origin. Also it is assumed that the fluid viscosity and the thermal conductivity vary as an inverse function and linear function of temperature respectively. Using the similarity transformation, the governing system of non-linear partial differential equations are transformed into similarity non-linear ordinary differential equations and are solved numerically using symbolic software MATHEMATICA 7.0. The numerical values obtained within the boundary layer for the dimensionless velocity, temperature, skin friction coefficient and the Nusselt number are presented through graphs and tables for several sets of values of the parameters. The effects of various physical parameters on the flow and heat transfer characteristics are discussed from the physical point of view.  相似文献   

8.
An analysis is presented to describe the boundary layer flow and heat transfer towards a porous exponential stretching sheet. Velocity and thermal slips are considered instead of no-slip conditions at the boundary. Thermal radiation term is incorporated in the temperature equation. Similarity transformations are used to convert the partial differential equations corresponding to the momentum and heat equations into highly non-linear ordinary differential equations. Numerical solutions of these equations are obtained by shooting method. It is found that the fluid velocity and temperature decrease with increasing slip parameter. Temperature is found to decrease with an increase of thermal slip parameter. Thermal radiation enhances the effective thermal diffusivity and the temperature rises.  相似文献   

9.
The main purpose of this study is to survey numerically comparison of two- phase and single phase of heat transfer and flow field of copper-water nanofluid in a wavy channel. The computational fluid dynamics (CFD) prediction is used for heat transfer and flow prediction of the single phase and three different two-phase models (mixture, volume of fluid (VOF), and Eulerian). The heat transfer coefficient, temperature, and velocity distributions are investigated. The results show that the differences between the temperature fie].d in the single phase and two-phase models are greater than those in the hydrodynamic tleld. Also, it is found that the heat transfer coefficient predicted by the single phase model is enhanced by increasing the volume fraction of nanoparticles for all Reynolds numbers; while for the two-phase models, when the Reynolds number is low, increasing the volume fraction of nanoparticles will enhance the heat transfer coefficient in the front and the middle of the wavy channel, but gradually decrease along the wavy channel.  相似文献   

10.
《力学快报》2022,12(5):100357
Hybrid nanofluids have attracted burgeoning attention owing to their outstanding capacity to improve heat transfer. The influence of velocity and temperature slip parameter and nanoparticls' (NPs') volume fraction on a vertical plate in the existence of suction has been explored in this work. The investigation's controlling partial differentiation equations were transformed into a conventional differential equation mechanism using resemblance modifications. Equations were then solved employing the fifth-order Runge-Kutta method. The skin coefficient of friction, temperature, and temperature gradient all rise when the volume percentage of NPs increases from 0 to 2%. Furthermore, a rise in the temperature slip variable was linked to a drop in the Nusselt number (heat transfer).The Nusselt number increased 0.15% and 5.63% respectively when the velocity slip parameter enhanced from 0 to 5 and the NPs volume percentage were increased from 0 to 1.5%. Furthermore, an increase in the temperature slip from 0 to 3 inflated the x-direction skin friction coefficient 8.2%, while inflation in the velocity slip from 0 to 5 was associated with a decline in the x-direction skin friction coefficient 95%.  相似文献   

11.
The boundary layer flow of a nanofluid past a stretching/shrinking sheet with hydrodynamic and thermal slip boundary conditions is studied. Numerical solutions to the governing equations are obtained using a shooting method. The results are found for the skin friction coefficient, the local Nusselt number, and the local Sherwood number as well as the velocity, temperature, and concentration profiles for some values of the velocity slip parameter, thermal slip parameter, stretching/shrinking parameter, thermophoresis parameter, and Brownian motion parameter. The results show that the local Nusselt number, which represents the heat transfer rate, is lower for higher values of thermal slip parameter, thermophoresis parameter, and Brownian motion parameter.  相似文献   

12.
This work deals with the influence of thermal radiation on the problem of the mixed convection thin film flow and heat transfer of a micropolar fluid past a moving infinite vertical porous flat plate with a slip velocity.The fluid viscosity and the thermal conductivity are assumed to be the functions of temperature.The equations governing the flow are solved numerically by the Chebyshev spectral method for some representative value of various parameters.In comparison with the previously published work,the excellent agreement is shown.The effects of various parameters on the velocity,the microrotation velocity,and the temperature profiles,as well as the skin-friction coefficient and the Nusselt number,are plotted and discussed.  相似文献   

13.
The viscous dissipation and heat transfer in the Darcy-Forchheimer flow by a rotating disk are examined. The partial slip conditions are invoked. The optimal series solutions are computed via the optimal homotopic analysis method(OHAM). The thermophoresis and Brownian motions are studied. The Darcy-Forchheimer relation characterizes the porous space. The roles of influential variables on the physical quantities are graphically examined. A reduction in the local Nusselt number is observed through thermophoresis and thermal slip parameters. The local Sherwood number depicts an increasing trend for the higher Brownian motion and concentration slip parameters.  相似文献   

14.
The local and average heat transfer characteristics of spoke like fins that extend outward from a rotating shaft have been determined experimentally. The experiments encompassed a number of geometrical parameters, including the length and chord of the fins, the number of fins deployed around the circumference of the shaft and the orientation angles of the fin. The experiments cover a wider range of rotational speeds, which varies from 25 up to 2,000 rpm. Three wire heat flux sensors have been used in conjunction with a slip ring apparatus to evaluate the local and average heat transfer coefficients. The output results indicated that, the heat transfer transition on rotating fins occurs at Reynolds number lower than encountered on the stationary rectangular fins in crossflow. In general, with non zero incidence angle, the rotating system acts as a fan and creates axial air motion, which enhance the heat transfer rate. However, the effect of orientation angle reduces with increasing the rotational speed. The Nusselt number data are independent of the number of fins in the circumferential array at high rotational speed and are weakly dependent at low Reynolds numbers. To facilitate the use of the results for design, correlations were developed which represent the fin heat transfer coefficient as a continuous function of the investigated independent parameters.  相似文献   

15.
An analytic solution is obtained for forced convection flow in a parallel-plates channel or a circular duct occupied by a hyper-porous medium saturated with a rarefied gas in the slip-flow regime, for the case of uniform flux boundary conditions. As expected, it is found that velocity slip leads in general to increased heat transfer and temperature slip leads to reduced heat transfer.  相似文献   

16.
The influence of partial slip, thermal radiation, chemical reaction and temperature‐dependent fluid properties on heat and mass transfer in hydro‐magnetic micropolar fluid flow over an inclined permeable plate with constant heat flux and non‐uniform heat source/sink is studied. The transverse magnetic field is assumed as a function of the distance from the origin. Also it is assumed that the fluid viscosity and the thermal conductivity vary as an inverse function and linear function of temperature, respectively. With the use of the similarity transformation, the governing system of non‐linear partial differential equations are transformed into non‐linear ordinary differential equations and are solved numerically using symbolic software MATHEMATICA 7.0 (Wolfram Research, Champaign, IL). The numerical values obtained for the velocity, microrotation, temperature, species concentration, skin friction coefficient and the Nusselt number are presented through graphs and tables for several sets of values of the parameters. The effects of various physical parameters on the flow and heat transfer characteristics are discussed.Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
The fin efficiency in a heat exchanger element that is a simplification of one row in a tube-and-fin heat exchanger was theoretically examined within wide ranges of the affecting variables: the conventional fin efficiency and the isothermal effectiveness of the heat exchanger. These variables are suggested for use also in the further studies. An analytical solution can be found for the case of a constant heat transfer coefficient. The ambient temperature variation alone decreases the fin efficiency less than 4%. The local heat transfer coefficient obtained from the numerical fluid flow simulations is strongly affected by the fin properties because the thermal boundary conditions for the fluid flow changes. On a poorly conducting fin surface the heat transfer coefficient in front of the fin base is much larger than on an isothermal fin because the heat flux is increasing in the flow direction. At low fin efficiencies this compensates for the decrease in fin efficiency due to ambient temperature variation.  相似文献   

18.
A numerical solution is described for simultaneous forced convection and radiation in flow between two parallel plates forming ahannel. The front plate is transparent to thermal radiation while the back one is thermally insulated. Analyses for both flow and heat are presented for the case of a non-emitting ‘blackened’ fluid. The governing equations of the stream function and the temperature together with their boundary conditions are presented in non-dimensional expressions. The solution is found to depend on eight dimensionless parameters, namely the ratio of the height of the channel to the distance between the plates, the initial dimensionless temperature, the optical thickness, the absorptivities of both plates, the Reynolds number, the Prandtl number and the heat transfer coefficient from the front plate to the surroundings. The numerical solution is obtained using a finite-difference technique. A study has been made of the effect of the initial temperature of the flow at the channel inlet, the dimensionless loss coefficient from the front plate, the absorptivity of the back plate and the optical thickness, on the temperature distribution in the channel, the heat collection efficiency and the average temperature rise in the channel. Results showed that increasing the optical thickness increases the temperature of the front plate and decreases the temperature of the back plate. Also, increasing the optical thickness increases the efficiency of heat collection, which reaches its maximum asymptotic value at an optical thickness of about 1.5. Moreover, the location of the maximum temperature is found to depend on both the optical thickness and the dimensionless heat loss coefficient from the front plate.  相似文献   

19.
Supersonic perfect-gas flow past a sphere and a cylinder at a constant surface temperature is investigated on the basis of a numerical solution of the Navier-Stokes equations. The Re-dependence of the Nusselt number and the recovery coefficient is calculated for the Reynolds numbers ranging from 1 to 1000 and Mach numbers 3 (cylinder) and 5 (sphere) and compared with the experimental data. The influence of slip and no-slip conditions imposed on the body surface on the heat transfer parameters and the base flow is analyzed.  相似文献   

20.
A magnetohydrodynamic flow of the Casson fluid over a stretching surface in the presence of the slip condition, heat transfer, and thermal radiation is considered. The effects of the skin friction coefficient and local Nusselt number on flow parameters are analyzed numerically. The present results are compared with the existing limiting solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号