首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
One-dimensional ordered water molecules entering and exiting from a carbon nanotube with an appropriate radius are studied with molecular dynamics simulations. It can be found that a water molecule near the nanotube end is more likely to be expelled from the nanotube if its dipole is almost perpendicular to the nanotube axis. The key to this observation is that those water molecules are closer to the wall of the nanotube away from the equilibrium position of the Lennar-Jones (LJ) potential. Thus, the interaction energy for those water molecules is relatively high. There are two particular structures of the perpendicular water molecule depending on the dipole direction of the adjacent water molecule in the nanotube. Although the probabilities of these structures are quite small, their contributions to the net flux across the nanotube end are approximately equal to the predominant structures. The present findings further show the possibility of controlling the water flow by regulating the dipole directions of the water molecules inside the nanochannels.  相似文献   

2.
One-dimensional ordered water molecules entering and exiting from a carbon nanotube with an appropriate radius are studied with molecular dynamics simulations.It can be found that a water molecule near the nanotube end is more likely to be expelled from the nanotube if its dipole is almost perpendicular to the nanotube axis.The key to this observation is that those water molecules axe closer to the wall of the nanotube away from the equilibrium position of the Lennar-Jones (LJ) potential.Thus,the interaction energy for those water molecules is relatively high.There are two particular structures of the perpendicular water molecule depending on the dipole direction of the adjacent water molecule in the nanotube.Although the probabilities of these structures are quite small,their contributions to the net flux across the nanotube end are approximately equal to the predominant structures.The present findings further show the possibility of controlling the water flow by regulating the dipole directions of the water molecules inside the nanochannels.  相似文献   

3.
Current carbon nanotube (CNT) synthesis methods include the production of ordered, free-standing vertically aligned arrays, the properties of which are partially governed by interactions between adjacent tubes. Using material parameters determined by atomistic methods, here we represent individual CNTs by a simple single degree of freedom ‘lollipop’ model to investigate the formation, mechanics, and self-organization of CNT bundles driven by weak van der Waals interactions. The computationally efficient simple single degree of freedom model enables us to study arrays consisting of hundreds of thousands of nanotubes. The effects of nanotube parameters such as aspect ratio, bending stiffness, and surface energy, on formation and bundle size, as well as the intentional manipulation of bundle pattern formation, are investigated. We report studies with both single wall carbon nanotubes (SWCNTs) and double wall carbon nanotubes (DWCNTs) with varying aspect ratios (that is, varying height). We calculate the local density distributions of the nanotube bundles and show that there exists a maximum attainable bundle density regardless of an increase in surface energy for nanotubes with given spacing and stiffness. In addition to applications to CNTs, our model can also be applied to other types of nanotube arrays (e.g. protein nanotubes, polymer nanofilaments).  相似文献   

4.
Electromechanical carbon nanothermometers are devices that work based on the interactions and relative motions of double-walled carbon nanotubes (DWCNTs). In this paper, the mechanics of carbon nanotubes (CNTs) constituting two well-known configurations for nanothermometer, namely shuttle configuration and telescope configuration are fully investigated. Lennard-Jones (LJ) potential function along with the continuum approximation is employed to investigate van der Waals (vdW) interactions between the interacting entities. Accordingly, semi-analytical expressions in terms of single integrals are obtained for vdW interactions. Acceptance condition and suction energy are studied for the shuttle configuration. In addition, a universal potential energy is presented for the shuttle configuration consisting of two finite CNTs. Also, for the telescope configuration, extensive studies are performed on the distributions of potential energy and interaction force for various radii and lengths of CNTs. It is found that these geometrical parameters have a considerable effect on the potential energy.  相似文献   

5.
In this paper, the stresses and buckling behaviors of a thick-walled micro sandwich panel with a flexible foam core and carbon nanotube reinforced composite(CNTRC) face sheets are considered based on the high-order shear deformation theory(HSDT) and the modified couple stress theory(MCST). The governing equations of equilibrium are obtained based on the total potential energy principle. The effects of various parameters such as the aspect ratio, elastic foundation, temperature changes, and volum...  相似文献   

6.
7.
The molecular dynamics simulations are performed to show that in aque- ous environments, a short single-walled carbon nanotube (SWCNT) guided by a long SWCNT, either inside or outside the longer tube, is capable of moving along the nanotube axis unidirectionally in an electric field perpendicular to the carbon nanotube (CNT) axis with the linear gradient. The design suggests a new way of molecule transportation or mass delivery. To reveal the mechanism behind this phenomenon, the free energy profiles of the system are calculated by the method of the potential of mean force (PMF).  相似文献   

8.
The bleaching of a strongly absorbing liquid by a short laser pulse is investigated for various layer thicknesses on the assumption that the quantum-mechanical and specific (per molecule) optical parameters of the liquid are constant. The temporal and spatial distributions of the basic parameters of the liquid (temperature, pressure, internal energy, and velocity) and the radiation intensity are obtained. For the dependence of the water transparency function on the pulse energy satisfactory agreement between the theoretical results and the experimental data is established. The interaction between water and beams with Gaussian and annular transverse intensity distributions is studied. It is shown that the experiments with annular distributions can provide additional confirmation of the hydrodynamic mechanism of liquid bleaching by a laser beam.  相似文献   

9.
The three-dimensional theory of stability of a carbon nanotube (CNT) in a polymer matrix is presented. The results are obtained on the basis of the three-dimensional linearized theory of stability of deformable bodies. Flexural and helical (torsional) buckling modes are considered. It is proved that the helical (torsional) buckling modes occur in a single CNT (the interaction of neighboring CNTs is neglected) and do not occur in nanocomposites (the interaction of neighboring CNTs is taken into account) __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 1, pp. 23–37, January 2006.  相似文献   

10.
The capability of carbon nanotubes (CNTs) in efficient transporting of drug molecules into the biological cells has been the focus of attention of various scientific disciplines during the past decade. From applied mechanics points of view, translocation of a nanoparticle inside the pore of a CNT would result in vibrations. The true understanding of the interactive forces between the moving nanoparticle and the inner surface of the CNT is a vital step in factual realization of such vibrations. Herein, by employing the nonlocal Rayleigh beam theory, nonlinear vibrations of single-walled carbon nanotubes (SWCNTs) as nanoparticle delivery nanodevices are studied. The existing van der Waals interactional forces between the constitutive atoms of the nanoparticle and those of the SWCNT, frictional force, and both longitudinal and transverse inertial effects of the moving nanoparticle are taken into account in the proposed model. The nonlinear-nonlocal governing equations are explicitly obtained and then numerically solved using Galerkin method and a finite difference scheme in the space and time domains, respectively. The roles of the velocity and mass weight of the nanoparticle, small-scale effect, slenderness ratio, and vdW force on the maximum longitudinal and transverse displacements as well as the maximum nonlocal axial force and bending moment within the SWCNT are examined. In general, the obtained results reveal that the nonlinear analysis should be performed when the nanotube structure is traversed by a moving nanoparticle with high levels of the mass weight and velocity.  相似文献   

11.
The main objective of this paper is to investigate the mechanical behaviour (strength and stiffness) of carbon nanotubes (CNTs) under combinations of bending and twisting. In order to achieve this goal, molecular dynamics (MD) simulations of bended and twisted CNTs are performed. The LAMMPS code is used, the AIREBO potential is considered for CC bonds, the temperature is kept at 300 K and incremental bending and twisting rotations are imposed to the CNT. Two types of CNTs are analyzed, including zig-zag (8,0) and armchair (5,5) CNTs with similar radius and length. The CNTs are also analyzed for pure bending and pure twisting. The main results are shown in the form of diagrams of energy and moment against imposed rotations. Some relevant conclusions are drawn concerning the influence of loading (bending and twisting) on the stiffness, strength and failure of CNTs: namely, it is concluded that armchair CNTs possess higher strength and fracture toughness under twisting–bending loading than zigzag CNTs; additionally, it is found that both CNTs (armchair and zigzag) still support moderate-to-high bending levels without failure after being extremely twisted and torsionally buckled, even for twisting angles four times those corresponding to torsional buckling; finally, the results prove that CNTs, mostly armchair ones, exhibit very high twisting–bending stiffness and strength and can be used with confidence as torsional spring elements in nanoelectromechanical systems (NEMS).  相似文献   

12.
《力学快报》2022,12(3):100344
Decelerating open-channel flow is a type of flow that gradually moves forward with decreasing velocity and increasing water depth. Although all flow parameters change along the streamwise direction, previous studies have revealed that these parameters' vertical distributions at different sections can be universally described with a single profile when being nondimensionalised by appropriate scales. This study focuses on the population trends of spanwise rotational motions at various sections along the main flow direction by particle imaging velocimetry (PIV) measurement. The wall-normal population distributions of density, radius, swirling strength, and convection velocity of the prograde and retrograde motions show similar trends in uniform open-channel flows. The dimensionless representation is invariant along the main flow direction. This study's results indicate the self-similar characteristic of population trends of spanwise rotational motions prevails in decelerating open-channel flow.  相似文献   

13.
The effect of the Stone–Wales defect due to the rotation of a pair of neighboring atoms on the equilibrium structure and mechanical properties of single-wall carbon nanotubes in axial stretch and twist is considered. The position of carbon atoms in a test section consisting of a number of repeated units hosting a solitary Stone–Wales defect is computed by minimizing the Tersoff–Brenner potential. The energy invested in the defect is found to decrease as the radius of the nanotube becomes smaller. Numerical computations for nanotubes with zigzag and armchair chiralities show that inclined, axial, and circumferential defect orientations have a strong influence on the mechanical response in axial stretch and twist. Stretching may cause the defect energy to become negative, revealing the possibility of spontaneous defect formation leading to failure. In some cases, stretching may eliminate the defect and purify the nanotube. When the tube is twisted around its axis, a neck develops at the location of the defect, signaling possible disintegration.  相似文献   

14.
This paper models van der Waals (vdW) force for axially compressed multi-walled carbon nanotubes (CNTs), whereby each tube is treated as a cylindrical shell continuum. Explicit formulas are derived for predicting the critical axial strain of a triple-walled CNT using a more refined vdW model. The analysis of a cylindrical shell continuum model of multi-walled CNTs using this refined vdW force model is carried out to study the influence of the effect of vdW interaction between different layers of a CNT and the size effect of a CNT on the vdW interaction. It is shown herein that the greatest contribution to the vdW interaction comes from the adjacent layers and the contribution from a remote layer may be neglected. The vdW interaction is found to be strongly dependent on the radius of the tube, especially when the radius is small enough (<7 nm). When the radius is large enough (>40 nm), the vdW interaction coefficient cij can be taken as a constant value (i.e. independent of radius). However, these constant values are different for the vdW interaction between two different layers of a multi-walled CNT. The effect of the vdW interaction on the critical axial strain of a triple-walled CNT for the cases of before and after buckling is also examined for various innermost radii.  相似文献   

15.
Explicit formulas are derived for the van der Waals (vdW) interaction between any two layers of a multi-walled carbon nanotube (CNT). Based on the derived formulas, an efficient algorithm is established for the buckling analysis of multi-walled CNTs, in which individual tubes are modeled as a continuum cylindrical shell. The explicit expressions are also derived for the buckling of double-walled CNTs. In previous studies by Ru (J. Appl. Phys. 87 (2000b) 7227) and Wang et al. (Int. J. Solids Struct. 40 (2003) 3893), only the vdW interaction between adjacent two layers was considered and the vdW interaction between the other two layers was neglected. The vdW interaction coefficient was treated as a constant that was not dependent on the radii of the tubes. However, the formulas derived herein reveal that the vdW interaction coefficients are dependent on the change of interlayer spacing and the radii of the tubes. With the increase of radii, the coefficients approach constants, and the constants between two adjacent layers are about 10% higher than those reported by Wang et al. (Int. J. Solids. Struct. 40 (2003) 3893). In addition, the numerical results show that the vdW interaction will lead to a higher critical buckling load in multi-walled CNTs. The effect of the tube radius on the critical buckling load of a multi-walled CNT is also examined.  相似文献   

16.
This paper deals with electrostatically actuated carbon nanotube (CNT) cantilever over a parallel ground plate. Three forces act on the CNTs cantilever, namely electrostatic, van der Waals, and damping. The van der Waals force is significant for values of 50 nm or less of the gap between the CNT and the ground plate. As both forces electrostatic and van der Waals are nonlinear, and the CNTs electrostatic actuation is given by AC voltage, the CNT undergoes nonlinear parametric dynamics. The methods of multiple scales and reduced order model (ROM) are used to investigate the system under soft AC near half natural frequency of the CNT and weak nonlinearities. The frequency–amplitude response and damping, voltage, and van der Waals effects on the response are reported. It is showed that only five terms ROM predicts and accurately predicts the pull-in instability and the saddle-node bifurcation, respectively.  相似文献   

17.
以非局部弹性理论为基础,采用欧拉-伯努利梁模型,考虑碳纳米管的小尺度效应,应用哈密顿原理获得了温度场作用下的输流悬臂单层碳纳米管(SWCNT)的振动控制方程以及边界条件,依靠微分变换法(DTM法)对此高阶偏微分方程进行求解,通过数值计算研究了温度场中悬臂单层输流碳纳米管的振动与颤振失稳问题。结果表明:管内流体流速、温度场中温度变化情况与小尺度参数都会对系统振动频率以及颤振失稳临界流速产生影响。其中,小尺度效应将会降低悬臂输流系统的稳定性,使系统更为柔软;而高温场与低温场对系统动态失稳的影响不同,低温场中随温度变化值的增加,系统的稳定性提高;高温场这一作用效果恰好与之相反。  相似文献   

18.
亓永  程先华 《摩擦学学报》2009,29(4):319-323
通过混酸对碳纳米管(CNTs)纯化,然后应用稀土溶液对纯化CNTs进行功能化,采用分子自组装技术在羟基化的玻璃基片表面制备了碳纳米管复合膜.运用原子力显微镜(AFM)及扫描电子显微镜(SEM)观察了薄膜的表面形貌,使用X射线光电子能谱仪(XPS)分析了薄膜表面典型元素的化学状态,并采用UMT-2MT摩擦试验机评价了薄膜的摩擦磨损性能.研究结果表明:通过硅烷偶联剂3-巯丙基三甲氧基硅烷(MPTS)的磺酸基化学吸附功能,稀土改性后的碳纳米管可以成功组装到氧化后的硅烷化表面.当组装碳纳米管复合膜后,基片表面的摩擦系数由无膜时的0.85降到了0.10,表明复合膜可以降低基片的摩擦系数,并且在较低载荷下具有较好的耐磨性能,显示了其在微机构表面改性方面良好的应用前景.  相似文献   

19.
The hydrodynamic problem of twin wedges entering water vertically at constant speed is analysed based on the velocity potential theory. The gravity effect on the flow is ignored based on the assumption that the ratio of the entry speed to the acceleration due to gravity is much larger than the time scale of interest. The problem is solved using the complex velocity potential together with the boundary element method through three stages. When the body touches water, the similarity solution is obtained for each wedge in isolation. This is used as the initial solution at the second stage for the time stepping technique for each wedge in a stretched system defined through the ratio of the Cartesian system to the distance the wedge travelled into water. When the disturbed zone of each wedge begins to affect the flow generated by the other wedge, the stretched system is abandoned and the original system is used. At the third stage the full interactions between the two wedges are included. Various results are provided for the wave elevation, pressure distribution and force at different deadrise angles. They are compared with those obtained from a single wedge and the interaction effect is investigated.  相似文献   

20.
A semi-analytical model for determining the equi-librium configuration and the radial breathing mode (RBM) frequency of single-wall carbon nanotubes (CNTs) is pre-sented. By taking advantage of the symmetry characteristics, a CNT structure is represented by five independent vari-ables. A line search optimization procedure is employed to determine the equilibrium values of these variables by minimizing the potential energy. With the equilibrium con-figuration obtained, the semi-analytical model enables an efficient calculation of the RBM frequency of the CNTs. The radius and radial breathing mode frequency results obtained from the semi-analytical approach are compared with those from molecular dynamics (MD) and ab initio calculations. The results demonstrate that the semi-analytical approach offers an efficient and accurate way to determine the equilib-rium structure and radial breathing mode frequency of CNTs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号