首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new relativistic four-component density functional approach for calculations of NMR shielding tensors has been developed and implemented. It is founded on the matrix formulation of the Dirac-Kohn-Sham (DKS) method. Initially, unperturbed equations are solved with the use of a restricted kinetically balanced basis set for the small component. The second-order coupled perturbed DKS method is then based on the use of restricted magnetically balanced basis sets for the small component. Benchmark relativistic calculations have been carried out for the (1)H and heavy-atom nuclear shielding tensors of the HX series (X=F,Cl,Br,I), where spin-orbit effects are known to be very pronounced. The restricted magnetically balanced basis set allows us to avoid additional approximations and/or strong basis set dependence which arises in some related approaches. The method provides an attractive alternative to existing approximate two-component methods with transformed Hamiltonians for relativistic calculations of chemical shifts and spin-spin coupling constants of heavy-atom systems. In particular, no picture-change effects arise in property calculations.  相似文献   

2.
The efficient relativistic Dirac-Hartree-Fock (DHF) and Dirac-Kohn-Sham (DKS) methods are proposed by an application of the pseudospectral (PS) approach. The present PS-DHF/DKS method is a relativistic extension of the PS-HF/KS method of Friesner, though we aim at higher numerical accuracy by elimination of superfluous arbitrariness. The relativistic PS-DHF/DKS method is implemented into our REL4D programs. Several PS applications to molecular systems show that the relativistic PS-DHF/DKS approach is more efficient than the traditional approach without a loss of accuracy. The present PS-DKS method successfully assigns and predicts the photoelectron spectra of hexacarbonyl complexes of tungsten and seaborgium theoretically.  相似文献   

3.
The exact one-electron matrix quasirelativistic theory [Kutzelnigg and Liu, J. Chem. Phys. 123, 241102 (2005)] is extended to the effective one-particle Kohn-Sham scheme of density functional theory. Several variants of the resultant theory are discussed. Although they are in principle equivalent, consideration of computational efficiency strongly favors the one (F(+)) in which the effective potential remains untransformed. Further combined with the atomic approximation for the matrix X relating the small and large components of the Dirac spinors as well as a simple ansatz for correcting the two-electron picture change errors, a very elegant, accurate, and efficient infinite-order quasirelativistic approach is obtained, which is far simpler than all existing quasirelativistic theories and must hence be regarded as a breakthrough in relativistic quantum chemistry. In passing, it is also shown that the Dirac-Kohn-Sham scheme can be made as efficient as two-component approaches without compromising the accuracy. To demonstrate the performance of the new methods, atomic calculations on Hg and E117 are first carried out. The spectroscopic constants (bond length, vibrational frequency, and dissociation energy) of E117(2) are then reported. All the results are in excellent agreement with those of the Dirac-Kohn-Sham calculations.  相似文献   

4.
We review recent theoretical and computational advances in the full relativistic four-component Dirac-Kohn-Sham (DKS) approach and its application to the calculation of the electronic structure of chemical systems containing many heavy atoms. We describe our implementation of an all-electron DKS approach based on the use of G-spinor basis sets, Hermite Gaussian functions, state-of-the-art density-fitting techniques and memory distributed parallelism. This approach has enormously extended the applicability of the DKS method, including for example large clusters of heavy atoms, and opens the way for future key developments. We examine the current limitations and future possible applications of the DKS approach, including the implementation of four-current density functionals and real-time propagation schemes. This would make possible to describe molecules in strong fields, accurately accounting for relativistic kinematic effects and spin-orbit coupling.  相似文献   

5.
Relativistic density functional theory (DFT) calculations of nuclear spin-spin coupling constants and shielding constants have been performed for selected transition metal (11th and 12th group of periodic table) and thallium cyanides. The calculations have been carried out using zeroth-order regular approximation (ZORA) Hamiltonian and four-component Dirac-Kohn-Sham (DKS) theory with different nonrelativistic exchange-correlation functionals. Two recent approaches for representing the magnetic balance (MB) between the large and small components of four-component spinors, namely, mDKS-RMB and sMB, have been employed for shielding tensor calculations and their results have been compared. Relativistic effects have also been analysed in terms of scalar and spin-orbit contributions at the two-component level of theory, including discussion of heavy-atom-on-light-atom effects for (1)J(CN), σ(C), and σ(N). The results for molecules containing metals from 4th row of periodic table show that relativistic effects for them are small (especially for spin-spin coupling constants). The biggest effects are observed for the 6th row where nonrelativistic theory reproduces only about 50%-70% of the two-component ZORA results for (1)J(MeC) and about 75% for heavy metal shielding constants. It is important to employ a full Dirac picture for calculations of heavy metal shielding constants, since ZORA reproduces only 75%-90% of the DKS results. Smaller discrepancies between ZORA-DFT and DKS are observed for nuclear spin-spin coupling constants. No significant differences are observed between the results obtained using mDKS-RMB and sMB approaches for magnetic balance in four-component calculations of the shielding constants.  相似文献   

6.
We elaborate the two-component Douglas-Kroll reduction of the Dirac-Kohn-Sham problem of relativistic density-functional theory as introduced by Matveev and Rosch [J. Chem. Phys. 118, 3997 (2003)]. That method retains corrections to the Coulomb self-interaction (or Hartree) term of the energy functional that are due to the picture change. Using analytic expressions for the matrix elements, one is able to abandon the resolution of the identity approach for a crucial step of the relativistic transformation. Thus, a major source of uncertainties of the method is eliminated because basis sets no longer have to be extended by functions of higher angular momentum, previously required to ensure kinetic balance. This approach also relies on the electron charge-density fitting scheme via an auxiliary basis set. An efficient approximate implementation results if one restricts the relativistic transformation to the spherically symmetric atom-centered auxiliary functions. It provides accurate results while simplifying greatly the expressions for the matrix elements of the relativistically transformed operators and significantly reducing the computational effort. We demonstrate the performance of the method for the fine structure of one-electron levels of the Hg atom, the g-tensor shifts of NO2, and the properties of the diatomic molecules Bi2, Pb2, PbO, and TlH.  相似文献   

7.
The normalized elimination of the small component (NESC) theory, recently proposed by Filatov and Cremer, is extended to include magnetic interactions and applied to the calculation of the nuclear magnetic shielding in HX (X=F, Cl, Br, I) systems. The NESC calculations are performed at the levels of the zeroth-order regular approximation (ZORA) and the second-order regular approximation (SORA). The calculations show that the NESC-ZORA results are very close to the NESC-SORA results, except for the shielding of the I nucleus. Both the NESC-ZORA and NESC-SORA calculations yield very similar results to the previously reported values obtained using the relativistic infinite-order two-component coupled Hartree-Fock method. The difference between NESC-ZORA and NESC-SORA results is significant for the shieldings of iodine.  相似文献   

8.
A systematic elimination of the off-diagonal parts of the Dirac Hamiltonian is carried out in the spirit of the Douglas-Kroll [Ann. Phys. 82, 87 1974] approach and the recently proposed infinite-order two-component method. The present approach leads to a series of approximate two-component Hamiltonians which are exact through a certain order in the external potential. These Hamiltonians are used to study the convergence pattern of approximate two-component theories. It is shown that to achieve an acceptably high accuracy for low-lying one-electron levels in heavy and superheavy systems one needs to use approximate Hamiltonians of prohibitively high order in the external potential. One can conclude that the finite-order two-component Hamiltonians are of limited usefulness in accurate relativistic calculations for heavy and superheavy systems.  相似文献   

9.
In this paper we derive the relativistic two-component formulation of time-dependent current-density-functional theory. To arrive at a two-component current-density formulation we apply a Foldy-Wouthuysen-type transformation to the time-dependent four-component Dirac-Kohn-Sham equations of relativistic density-functional theory. The two-component Hamiltonian is obtained as a regular expansion which is gauge invariant at each order of approximation, and to zeroth order it represents the time-dependent version of the relativistic zeroth order regular Hamiltonian obtained by van Lenthe et al., for the ground state [J. Chem. Phys.99, 4597 (1993)]. The corresponding zeroth order regular expression for the density is unchanged, whereas the current-density operator now comprises a paramagnetic, a diamagnetic, and a spin contribution, similar to the Gordon decomposition of the Dirac four current. The zeroth order current density is directly related to the mean velocity corresponding to the zeroth order Hamiltonian. These density and current density operators satisfy the continuity equation. This zeroth order approximation is therefore consistent and physically realistic. By combining this formalism with the formulation of the linear response of solids within time-dependent current-density functional theory [Romaniello and de Boeij, Phys. Rev. B71, 155108 (2005)], we derive a method that can treat orbital and spin contributions to the response in a unified way. The effect of spin-orbit coupling can now be taken into account. As first test we apply the method to calculate the relativistic effects in the linear response of several metals and nonmetals to a macroscopic electric field. Treatment of spin-orbit coupling yields visible changes in the spectra: a smooth onset of the interband transitions in the absorption spectrum of Au, a sharp onset with peak at about 0.46 eV in the absorption spectrum of W, and a low-frequency doublet structure in the absorption spectra of ZnTe, CdTe, and HgTe in agreement with experimental results.  相似文献   

10.
The introduction of the resolution-of-the-identity (RI) approximation for electron repulsion integrals in quantum chemical calculations requires in addition to the orbital basis so-called auxiliary or fitting basis sets. We report here such auxiliary basis sets optimized for second-order Møller–Plesset perturbation theory for the recently published (Weigend and Ahlrichs Phys Chem Chem Phys, 2005, 7, 3297–3305) segmented contracted Gaussian basis sets of split, triple-ζ and quadruple-ζ valence quality for the atoms Rb–Rn (except lanthanides). These basis sets are designed for use in connection with small-core effective core potentials including scalar relativistic corrections. Hereby accurate resolution-of-the-identity calculations with second-order Møller–Plesset perturbation theory (MP2) and related methods can now be performed for molecules containing elements from H to Rn. The error of the RI approximation has been evaluated for a test set of 385 small and medium sized molecules, which represent the common oxidation states of each element, and is compared with the one-electron basis set error, estimated based on highly accurate explicitly correlated MP2–R12 calculations. With the reported auxiliary basis sets the RI error for MP2 correlation energies is typically two orders of magnitude smaller than the one-electron basis set error, independent on the position of the atoms in the periodic table.  相似文献   

11.
We investigate the importance of relativistic effects on NMR shielding constants and chemical shifts of linear HgL(2) (L = Cl, Br, I, CH(3)) compounds using three different relativistic methods: the fully relativistic four-component approach and the two-component approximations, linear response elimination of small component (LR-ESC) and zeroth-order regular approximation (ZORA). LR-ESC reproduces successfully the four-component results for the C shielding constant in Hg(CH(3))(2) within 6 ppm, but fails to reproduce the Hg shielding constants and chemical shifts. The latter is mainly due to an underestimation of the change in spin-orbit contribution. Even though ZORA underestimates the absolute Hg NMR shielding constants by ~2100 ppm, the differences between Hg chemical shift values obtained using ZORA and the four-component approach without spin-density contribution to the exchange-correlation (XC) kernel are less than 60 ppm for all compounds using three different functionals, BP86, B3LYP, and PBE0. However, larger deviations (up to 366 ppm) occur for Hg chemical shifts in HgBr(2) and HgI(2) when ZORA results are compared with four-component calculations with non-collinear spin-density contribution to the XC kernel. For the ZORA calculations it is necessary to use large basis sets (QZ4P) and the TZ2P basis set may give errors of ~500 ppm for the Hg chemical shifts, despite deceivingly good agreement with experimental data. A Gaussian nucleus model for the Coulomb potential reduces the Hg shielding constants by ~100-500 ppm and the Hg chemical shifts by 1-143 ppm compared to the point nucleus model depending on the atomic number Z of the coordinating atom and the level of theory. The effect on the shielding constants of the lighter nuclei (C, Cl, Br, I) is, however, negligible.  相似文献   

12.
The theoretical and technical foundations are presented for the efficient relativistic electronic structure theories to treat heavy-atomic molecular systems. This review contains two surveys of four-component and two-component quasi-relativistic approaches. First, we review our highly efficient computational scheme for four-component relativistic ab initio molecular orbital (MO) methods over generally contracted spherical harmonic Gaussian-type spinors (GTSs). Illustrative calculations, which are performed with a new four-component relativistic ab initio molecular orbital program package REL4D, clearly show the efficiency of our computational scheme by the Dirac-Hartree-Fock (DHF) and Dirac-Hartree-Fock (DKS) methods. Next, in the two-component quasi-relativistic framework, two relativistic Hamiltonians, RESC and higher order Douglas-Kroll (DK) Hamiltonians, are introduced, and several illustrative calculations are shown. Numerical results for several systems show that good accuracy can be obtained with our third-order DK (DK3) Hamiltonian.  相似文献   

13.
The authors report the implementation of a simple one-step method for obtaining an infinite-order two-component (IOTC) relativistic Hamiltonian using matrix algebra. They apply the IOTC Hamiltonian to calculations of excitation and ionization energies as well as electric and magnetic properties of the radon atom. The results are compared to corresponding calculations using identical basis sets and based on the four-component Dirac-Coulomb Hamiltonian as well as Douglas-Kroll-Hess and zeroth-order regular approximation Hamiltonians, all implemented in the DIRAC program package, thus allowing a comprehensive comparison of relativistic Hamiltonians within the finite basis approximation.  相似文献   

14.
An approach to the development of a systematic sequence of relativistic approximations is reviewed. The approach depends on the atomically localized nature of relativistic effects, and is based on the normalized elimination of the small component in the matrix modified Dirac equation. Errors in the approximations are assessed relative to four-component Dirac-Hartree-Fock calculations or other reference points. Projection onto the positive energy states of the isolated atoms provides an approximation in which the energy-dependent parts of the matrices can be evaluated in separate atomic calculations and implemented in terms of two sets of contraction coefficients. The errors in this approximation are extremely small, of the order of 0.001 pm in bond lengths and tens of microhartrees in absolute energies. From this approximation it is possible to partition the atoms into relativistic and nonrelativistic groups and to treat the latter with the standard operators of nonrelativistic quantum mechanics. This partitioning is shared with the relativistic effective core potential approximation. For atoms in the second period, errors in the approximation are of the order of a few hundredths of a picometer in bond lengths and less than 1 kJ mol(-1) in dissociation energies; for atoms in the third period, errors are a few tenths of a picometer and a few kilojoule/mole, respectively. A third approximation for scalar relativistic effects replaces the relativistic two-electron integrals with the nonrelativistic integrals evaluated with the atomic Foldy-Wouthuysen coefficients as contraction coefficients. It is similar to the Douglas-Kroll-Hess approximation, and is accurate to about 0.1 pm and a few tenths of a kilojoule/mole. The integrals in all the approximations are no more complicated than the integrals in the full relativistic methods, and their derivatives are correspondingly easy to formulate and evaluate.  相似文献   

15.
The linear response within the elimination of the small component formalism is aimed at obtaining the leading order relativistic corrections to magnetic molecular properties in the context of the elimination of the small component approximation. In the present work we extend the method in order to include two-body effects in the form of a mean field one-body operator. To this end we consider the four-component Dirac-Hartree-Fock operator as the starting point in the evaluation of the second order relativistic expression of magnetic properties. The approach thus obtained is the fully consistent leading order approximation of the random phase approximation four-component formalism. The mean field effect on the relativistic corrections to both the diamagnetic and paramagnetic terms of magnetic properties taking into account both the Coulomb and Breit two-body interactions is considered.  相似文献   

16.
First-order relativistic corrections to the energy of closed-shell molecular systems are calculated, using all terms in the two-component Breit-Pauli Hamiltonian. In particular, we present the first implementation of the two-electron Breit orbit-orbit integrals, thus completing the first-order relativistic corrections within the two-component Pauli approximation. Calculations of these corrections are presented for a series of small and light molecules, at the Hartree-Fock and coupled-cluster levels of theory. Comparisons with four-component Dirac-Coulomb-Breit calculations demonstrate that the full Breit-Pauli energy corrections represent an accurate approximation to a fully relativistic treatment of such systems. The Breit interaction is dominated by the spin-spin interaction, the orbit-orbit interaction contributing only about 10% to the total two-electron relativistic correction in molecules consisting of light atoms. However, the relative importance of the orbit-orbit interaction increases with increasing nuclear charge, contributing more than 20% in H(2)S.  相似文献   

17.
High-quality, ab initio potential energy functions are obtained for the interaction of bromine atoms and anions with atoms of the six rare gases (Rg) from He to Rn. The potentials of the nonrelativistic (2)Sigma(+) and (2)Pi electronic states arising from the ground-state Br((2)P)-Rg interactions are computed over a wide range of internuclear separations using a spin-restricted version of the coupled cluster method with single and double excitations and noniterative correction to triple excitations [RCCSD(T)] with an extrapolation to the complete basis set limit, from basis sets of d-aug-cc-pVQZ and d-aug-cc-pV5Z quality. These are compared with potentials derived previously from experimental measurements and ab initio calculations. The same approach is used also to refine the potentials of the Br(-)-Rg anions obtained previously [Buchachenko et al., J. Chem. Phys. 125, 064305 (2006)]. Spin-orbit coupling in the neutral species is included both ab initio and via an atomic approximation; deviations between two approaches that are large enough to affect the results significantly are observed only in the Br-Xe and Br-Rn systems. The resulting relativistic potentials are used to compute anion zero electron kinetic energy photoelectron spectra, differential scattering cross sections, and the transport coefficients of trace amounts of both anionic and neutral bromine in the rare gases. Comparison with available experimental data for all systems considered proves a very high precision of the present potentials.  相似文献   

18.
A recently developed analysis method [J. Chem. Phys. 127, 124106 (2007)] for NMR spin-spin coupling constants employing two-component (spin-orbit) relativistic density functional theory along with scalar relativistic natural localized molecular orbitals (NLMOs) and natural bond orbitals (NBOs) has been extended for analyzing NMR shielding tensors. Contributions from a field-dependent basis set (gauge-including atomic orbitals) have been included in the formalism. The spin-orbit NLMO/NBO nuclear magnetic shielding analysis has been applied to methane, plumbane, hydrogen iodide, tetracholoplatinate(II), and hexachloroplatinate(IV).  相似文献   

19.
Based on the normalized elimination of the small component relativistic formalism, a new approach to the calculation of hyperfine structure parameters of paramagnetic molecules is developed and implemented. The new method is tested in the calculation of the isotropic hyperfine structure constant for a series of open-shell molecules containing mercury. The results of calculations carried out in connection with ab initio methods of increasing complexity demonstrate the high accuracy of the formalism developed. In view of its computational simplicity, the new approach provides the basis for an efficient and accurate calculation of the HFS parameters of large molecules.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号