首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We first show that a simple scaling of fluctuation coordinates defined in terms of a given reference point gives the conventional virial estimator in discretized path integral, where different choices of the reference point lead to different forms of the estimator (e.g., centroid virial). The merit of this procedure is that it allows a finite-difference evaluation of the virial estimator with respect to temperature, which totally avoids the need of higher-order potential derivatives. We apply this procedure to energy and heat-capacity calculations of the (H(2))(22) and Ne(13) clusters at low temperature using the fourth-order Takahashi-Imada [J. Phys. Soc. Jpn. 53, 3765 (1984)] and Suzuki [Phys. Lett. A 201, 425 (1995)] propagators. This type of calculation requires up to third-order potential derivatives if analytical virial estimators are used, but in practice only first-order derivatives suffice by virtue of the finite-difference scheme above. From the application to quantum clusters, we find that the fourth-order propagators do improve upon the primitive approximation, and that the choice of the reference point plays a vital role in reducing the variance of the virial estimator.  相似文献   

2.
The quantum instanton approximation is used to compute kinetic isotope effects for intramolecular hydrogen transfer in cis-1,3-pentadiene. Due to the importance of skeleton motions, this system with 13 atoms is a simple prototype for hydrogen transfer in enzymatic reactions. The calculation is carried out using thermodynamic integration with respect to the mass of the isotopes and a path integral Monte Carlo evaluation of relevant thermodynamic quantities. Efficient "virial" estimators are derived for the logarithmic derivatives of the partition function and the delta-delta correlation functions. These estimators require significantly fewer Monte Carlo samples since their statistical error does not increase with the number of discrete time slices in the path integral. The calculation treats all 39 degrees of freedom quantum mechanically and uses an empirical valence bond potential based on a molecular mechanics force field.  相似文献   

3.
Recently discovered identities in statistical mechanics have enabled the calculation of equilibrium ensemble averages from realizations of driven nonequilibrium processes, including single-molecule pulling experiments and analogous computer simulations. Challenges in collecting large data sets motivate the pursuit of efficient statistical estimators that maximize use of available information. Along these lines, Hummer and Szabo developed an estimator that combines data from multiple time slices along a driven nonequilibrium process to compute the potential of mean force. Here, we generalize their approach, pooling information from multiple time slices to estimate arbitrary equilibrium expectations. Our expression may be combined with estimators of path-ensemble averages, including existing optimal estimators that use data collected by unidirectional and bidirectional protocols. We demonstrate the estimator by calculating free energies, moments of the polymer extension, the thermodynamic metric tensor, and the thermodynamic length in a model single-molecule pulling experiment. Compared to estimators that only use individual time slices, our multiple time-slice estimators yield substantially smoother estimates and achieve lower variance for higher-order moments.  相似文献   

4.
In the effort to develop atomistic models capable of accurately describing nanoscale systems with complex interfaces, it has become clear that simple treatments with rigid charge distributions and dispersion coefficients selected to generate bulk properties are insufficient to predict important physical properties. The quantum Drude oscillator model, a system of one-electron pseudoatoms whose "pseudoelectrons" are harmonically bound to their respective "pseudonuclei," is capable of treating many-body polarization and dispersion interactions in molecular systems on an equal footing due to the ability of the pseudoatoms to mimic the long-range interactions that characterize real materials. Using imaginary time path integration, the Drude oscillator model can, in principle, be solved in computer operation counts that scale linearly with the number of atoms in the system. In practice, however, standard expressions for the energy and pressure, including the commonly used virial estimator, have extremely large variances that require untenably long simulation times to generate converged averages. In this paper, low-variance estimators for the internal energy are derived, in which the large zero-point energy of the oscillators does not contribute to the variance. The new estimators are applicable to any system of harmonic oscillators coupled to one another (or to the environment) via an arbitrary set of anharmonic interactions. The variance of the new estimators is found to be much smaller than standard estimators in three example problems, a one-dimensional anharmonic oscillator and quantum Drude models of the xenon dimer and solid (fcc) xenon, respectively, yielding 2-3 orders of magnitude improvement in computational efficiency.  相似文献   

5.
We present an efficient path integral approach for evaluating thermal rate constants within the quantum instanton (QI) approximation that was recently introduced to overcome the quantitative deficiencies of the earlier semiclassical instanton approach [Miller, Zhao, Ceotto, and Yang, J. Chem. Phys. 119, 1329 (2003)]. Since the QI rate constant is determined solely by properties of the (quantum) Boltzmann operator (specifically, by the zero time properties of the flux-flux and delta-delta correlation functions), it can be evaluated by well-established techniques of imaginary time path integrals even for quite complex chemical reactions. Here we present a series of statistical estimators for relevant quantities which can be evaluated straightforwardly with any nonlinear reaction coordinates and general Hamiltonians in Cartesian space. To facilitate the search for the optimal dividing surfaces required by the QI approximation, we introduce a two-dimensional quantum free energy surface associated with the delta-delta correlation function and describe how an adaptive umbrella sampling can be used effectively to construct such a free energy surface. The overall computational procedure is illustrated by the application to a hydrogen exchange reaction in gas phase, which shows excellent agreement of the QI rates with those obtained from quantum scattering calculations.  相似文献   

6.
Rigorous quantum dynamics calculations of reaction rates and initial state-selected reaction probabilities of polyatomic reactions can be efficiently performed within the quantum transition state concept employing flux correlation functions and wave packet propagation utilizing the multi-configurational time-dependent Hartree approach. Here, analytical formulas and a numerical scheme extending this approach to the calculation of state-to-state reaction probabilities are presented. The formulas derived facilitate the use of three different dividing surfaces: two dividing surfaces located in the product and reactant asymptotic region facilitate full state resolution while a third dividing surface placed in the transition state region can be used to define an additional flux operator. The eigenstates of the corresponding thermal flux operator then correspond to vibrational states of the activated complex. Transforming these states to reactant and product coordinates and propagating them into the respective asymptotic region, the full scattering matrix can be obtained. To illustrate the new approach, test calculations study the D + H(2)(ν, j) → HD(ν', j') + H reaction for J = 0.  相似文献   

7.
We describe a semiclassical quantum unimolecular reaction rate theory derived from the corresponding classical theory developed by Davis, Gray, Rice and Zhao (DGRZ). The analysis retains the intuitively useful mechanistic distinctions between intramolecular energy transfer and reaction, with the consequence that the semiclassical quantum theory version neglects some interference effects in the reaction dynamics. In the limiting case that intramolecular energy transfer is very fast compared to the rate of reaction we show that the DGRZ representation of the rate constant can be transformed, using the Weyl correspondence between quantum operators and classical variables, to the quantum flux–flux correlation function representation of the rate constant. In the more general case that the rate of intramolecular energy transfer influences the reaction dynamics, the semiclassical representation of the Wigner function for a classical system with both quasiperiodic and chaotic motion is used to obtain the reaction rate constant. Our analysis identifies the quantum analogue of the classical bottleneck to intramolecular energy transfer with the scars of unstable periodic orbits; it leads to a flux–flux correlation function representation of the rate constant for intramolecular energy transfer.  相似文献   

8.
We consider the calculation of quantum mechanical rate constants for chemical reactions via algorithms that utilize short-time values of the symmetrized flux-flux correlation function. We argue that the dividing surface that makes optimal use of the short-time quantum information is the surface that minimizes the value at the origin of the symmetrized flux-flux correlation function. We also demonstrate that, in the classical limit, this quantum variational criterion produces the same dividing surface as Wigner's variational principle. Finally, we argue that the quantum variational criterion behaves in a nearly optimal fashion with respect to the minimization of the extent of re-crossing flux.  相似文献   

9.
The estimator proposed recently by Delmas and Jourdain for waste-recycling Monte Carlo achieves variance reduction optimally with respect to a control variate that is evaluated directly using the simulation data. Here, the performance of this estimator is assessed numerically for free energy calculations in generic binary alloys and is compared to those of other estimators taken from the literature. A systematic investigation with varying simulation parameters of a simplified system, the anti-ferromagnetic Ising model, is first carried out in the transmutation ensemble using path-sampling. We observe numerically that (i) the variance of the Delmas-Jourdain estimator is indeed reduced compared to that of other estimators; and that (ii) the resulting reduction is close to the maximal possible one, despite the inaccuracy in the estimated control variate. More extensive path-sampling simulations involving an FeCr alloy system described by a many-body potential additionally show that (iii) gradual transmutations accommodate the atomic frustrations; thus, alleviating the numerical ergodicity issue present in numerous alloy systems and eventually enabling the determination of phase coexistence conditions.  相似文献   

10.
Unbiased estimators for spatial distribution functions of classical fluids   总被引:1,自引:0,他引:1  
We use a statistical-mechanical identity closely related to the familiar virial theorem, to derive unbiased estimators for spatial distribution functions of classical fluids. In particular, we obtain estimators for both the fluid density rho(r) in the vicinity of a fixed solute and the pair correlation g(r) of a homogeneous classical fluid. We illustrate the utility of our estimators with numerical examples, which reveal advantages over traditional histogram-based methods of computing such distributions.  相似文献   

11.
Higher order factorization schemes are developed for path integral molecular dynamics in order to improve the convergence of estimators for physical observables as a function of the Trotter number. The methods are based on the Takahashi-Imada and Susuki decompositions of the Boltzmann operator. The methods introduced improve the averages of the estimators by using the classical forces needed to carry out the dynamics to construct a posteriori weighting factors for standard path integral molecular dynamics. The new approaches are straightforward to implement in existing path integral codes and carry no significant overhead. The Suzuki higher order factorization was also used to improve the end-to-end distance estimator in open path integral molecular dynamics. The new schemes are tested in various model systems, including an ab initio path integral molecular dynamics calculation on the hydrogen molecule and a quantum water model. The proposed algorithms have potential utility for reducing the cost of path integral molecular dynamics calculations of bulk systems.  相似文献   

12.
We survey the contributions from Latin American theoretical chemists to the field of quantum chemical topology (QCT) over nearly the last 30 years with emphasis on the developments and applications of the quantum theory of atoms in molecules (QTAIM). Applications of QCT in the fields of excited states, electron delocalization, chemical bond, aromaticity, conformational analysis, spectroscopic properties, and chemical reactivity are presented. We also consider the coupling of QTAIM with time-dependent density functional theory, the virial theorem in the Kohn-Sham method and the inclusion of electron dynamical correlation in the interacting quantum atoms method using coupled cluster and multi-configurational densities. Additionally, we describe the development of efficient algorithms for the calculation of topological properties derived from the electron density. This review is aimed not only at providing an account of the contributions to QCT in Latin America but also at stimulating guides for further progress in the field.  相似文献   

13.
Two different methods for transition-state theory (TST) rate calculations are presented that use the recently developed notions of the moving dividing surface and the associated moving separatrices: one is based on the flux-over-population approach and the other on the calculation of the reactive flux. The flux-over-population rate can be calculated in two ways by averaging the flux first over the noise and then over the initial conditions or vice versa. The former entails the calculation of reaction probabilities and is closely related to previous TST rate derivations. The latter results in an expression for the transmission factor as the noise average of a stochastic variable that is given explicitly as a function of the moving separatrices. Both the reactive-flux and flux-over-population methods suggest possible new ways of calculating approximate rates in anharmonic systems. In particular, numerical simulations of harmonic and anharmonic systems have been used to calculate reaction rates based on the reactive flux calculation using the fixed and moving dividing surfaces so as to illustrate the computational advantages of the latter.  相似文献   

14.
We construct improved quantum Monte Carlo estimators for the spherically and system-averaged electron pair density (i.e., the probability density of finding two electrons separated by a relative distance u), also known as the spherically averaged electron position intracule density I(u), using the general zero-variance zero-bias principle for observables, introduced by Assaraf and Caffarel. The calculation of I(u) is made vastly more efficient by replacing the average of the local delta-function operator by the average of a smooth nonlocal operator that has several orders of magnitude smaller variance. These new estimators also reduce the systematic error (or bias) of the intracule density due to the approximate trial wave function. Used in combination with the optimization of an increasing number of parameters in trial Jastrow-Slater wave functions, they allow one to obtain well converged correlated intracule densities for atoms and molecules. These ideas can be applied to calculating any pair-correlation function in classical or quantum Monte Carlo calculations.  相似文献   

15.
The points where the fluid-solid (face-centered-cubic) transition takes place in the quantum hard-sphere system, for reduced densities 0.85>rhoN*>0.5 (reduced de Broglie wavelengths lambdaB*相似文献   

16.
The quantum reactive flux correlation function is computed for a two-level system using an expression for the quantum equilibrium structure appropriate for strong nonadiabatic coupling, in conjunction with quantum–classical Liouville dynamics. The magnitude of the quantum mechanical enhancement of the reaction rate as a result of strong nonadiabatic coupling is studied. The reaction rate is found to increase strongly with an increase in the nonadiabatic coupling strength as well as with a decrease in the temperature. Equilibrium quantum effects increase the ground-state contribution to the rate constant but these effects decrease the excited-state contribution.  相似文献   

17.
A semiclassical initial value representation formulation using the Van Vleck [Proc. Natl. Acad. Sci. U.S.A. 14, 178 (1928)] propagator has been used to calculate the flux correlation function and thereby reaction rate constants. This Van Vleck formulation of the flux-flux correlation function is computationally as simple as the classical Wigner [Trans. Faraday Soc. 34, 29 (1938)] model. However, unlike the latter, it has the ability to capture quantum interference/coherence effects. Classical trajectories are evolved starting from the dividing surface that separates reactants and products, and are evolved negatively in time. This formulation has been tested on model problems ranging from the Eckart barrier, double well to the collinear H+H2.  相似文献   

18.
The osmotic second virial coefficient is a key parameter in light scattering, protein crystallisation, self-interaction chromatography, and osmometry. The interpretation of the osmotic second virial coefficient depends on the set of independent variables. This commonly includes the independent variables associated with the Kirkwood–Buff, the McMillan–Mayer, and the Lewis–Randall solution theories. In this paper we analyse the osmotic second virial coefficient using a Gibbs–McMillan–Mayer framework which is similar to the McMillan–Mayer framework with the exception that pressure rather than volume is an independent variable. A Taylor expansion is applied to the osmotic pressure of a solution where one of the solutes is a small molecule, a salt for instance, that equilibrates between the two phases. Other solutes are retained. Solvents are small molecules that equilibrate between the two phases. The independent variables of the solvents are temperature, pressure, and chemical potentials. The derivatives in the Gibbs–McMillan–Mayer framework are transformed into derivatives in the Gibbs framework. This offers the possibility for an interpretation and correlation of the osmotic second virial coefficient using activity coefficient models.  相似文献   

19.
In this work, the Peng–Robinson (P–R) equation of state has been modified by proposing a new α function for calculating the second virial coefficients of alkali metals. The relationship between α0.5 and (1???T r 0.5 ) is a nonlinear function. The correlation between the second virial coefficient and P–R equation was presented by expanding the P–R equation into its Taylor series form. For P–R equation, the linear correlation between parameters C1 and C2 of α function and acentric factors \( \omega \) of alkali metals was proposed. The new α function and its first, second and third derivatives are continuous. The average standard deviations of compressibility factor which calculated by modified P–R equation are less than 4.3%. The second virial coefficients of alkali metals were calculated over the temperature range 600–3000 K by using the modified P–R equation. Comparison with literature data, the new equation provides more reliable and accurate second virial coefficient predictions for alkali metals than the original P–R equation. It is useful to guide and improve calculation of the second virial coefficients of other metal vapors for design and operation of separation processes in vacuum metallurgy.  相似文献   

20.
The nonequilibrium fluctuation theorems have paved the way for estimating equilibrium thermodynamic properties, such as free energy differences, using trajectories from driven nonequilibrium processes. While many statistical estimators may be derived from these identities, some are more efficient than others. It has recently been suggested that trajectories sampled using a particular time-dependent protocol for perturbing the Hamiltonian may be analyzed with another one. Choosing an analysis protocol based on the nonequilibrium density was empirically demonstrated to reduce the variance and bias of free energy estimates. Here, we present an alternate mathematical formalism for protocol postprocessing based on the Feynmac-Kac theorem. The estimator that results from this formalism is demonstrated on a few low-dimensional model systems. It is found to have reduced bias compared to both the standard form of Jarzynski's equality and the previous protocol postprocessing formalism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号