首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electron correlation effects in the two excited states of Li(2), 3 (1)Sigma(g) (+) and 2 (1)Sigma(u) (+), one with a shelf shape and another with double minima in their potential energy curves, have been studied with the aid of the calculated electron pair density distribution as a function of the internuclear distance and the analysis of the natural orbitals. Both states show increased electron pair densities at intermediate interelectronic distances around the second minimum of their potential energy curves. Since the bond breaks homolitically this observation runs contrary to regular expectations. Analysis of the electron pair density distributions and the natural orbitals provides mechanisms to account for this abnormal behavior.  相似文献   

2.
Theoretical and experimental evidence of a weak M(z)(R) dipole transition moment between the X(1)0g+ ground and (3)1u(5(3)P1) excited states in Cd2 is presented. Two independent attempts at recording an excitation spectrum of the (3)1u <-- X(1)0g+ transition using a laser beam crossed with a supersonic free-jet expansion beam are reported. The measurements were performed in a spectral range predicted as a result of both ab initio calculations of the electronic energy-state potentials involved in the transition and a simulation of the excitation spectrum. Unfortunately it was impossible to provide unambiguous experimental support for the calculated (3)1u-state potential, due to the very poor signal to noise ratio. However, the experimental results corroborate the very small values of the <(3)1u|M(z)|X(1)0g+> elements obtained in the calculations. This work provides as a reliable starting point for further analysis of the (3)1u-state characteristics.  相似文献   

3.
The fluorescence spectrum of Na2 induced by the 4879.86 A line of an Argon ion laser has been analyzed with special emphasis on determination of accurate relative intensities. We have observed nineteen fluorescence series for the B1pi(u) --> X1sigma(g)+ band system. Some series are reported for the first time. The radiative transition probabilities for the observed fluorescence series were calculated using hybrid potential energy curves for the B1pi(u) and X1sigma(g)+ states constructed up to dissociation and a B-X transition dipole moment function. Radiative lifetimes for the rovibrational levels of the upper states pumped by the laser line have also been calculated. The transition probabilities and lifetimes agree with the corresponding observed measurements usually within the experimental uncertainty. From the rotational satellite structure with deltaJ' = +/- 1, +/- 2...+/- 20, for some nu'-bands of the most intense fluorescence series induced by emission from the vibrational-rotational levels: nu' = 6, J' = 43 and v' = 9, J' = 56, collision-induced transition rates and average cross sections have been obtained.  相似文献   

4.
A new band system of C(2), d (3)Pi(g)<--c (3)Sigma(u) (+) is observed by laser induced fluorescence spectroscopy, constituting the first direct detection of the c (3)Sigma(u) (+) state of C(2). Observations were made by laser excitation of c (3)Sigma(u) (+)(v(")=0) C(2), produced in an acetylene discharge, to the d (3)Pi(g)(v(')=3) level, followed by detection of Swan band fluorescence. Rotational analysis of this band yielded rotational constants for the c (3)Sigma(u) (+)(v(")=0) state: B(0)=1.9218(2) cm(-1), lambda(0)=-0.335(4) cm(-1) and gamma(0)=0.011(2) cm(-1). The vibrational band origin was determined to be nu(3-0)=15861.28 cm(-1).  相似文献   

5.
6.
The most recently published listings of vibrational term values and corresponding turning points of the potential energy curve of X (1)Sigma(g) (+) K(2) consist of two sets of data: energy levels v(")=0-73 and v(")=74-81. The two sets of data are found to exhibit a discontinuity. This is due to different Dunham coefficients used to produce a listing of turning points for levels v(")=0-73 and for levels v(")=74-81. This work provides an explicit, self-consistent listing of turning points for the entire domain of observed vibrational term values. New values are reported for levels v(")=53-81. This potential yields eigenvalues in excellent agreement with experimental vibrational term values and predicts two more bound levels. A "universal" function proposed in 1991 for predicting potential energy curves yields eigenvalues for levels v(")=0-81 (99.96% of dissociation) that have an average absolute deviation from the experiment of 0.95 cm(-1).  相似文献   

7.
8.
We have investigated the Rb2 475 nm system by resonance enhanced two-photon ionization spectroscopy in a pulsed molecular beam. Strong extra bands accompanying the 2 (1)Pi(u) v' = 5 - 8 <-- X (1)Sigma(g)(+) v' = 0 bands were newly observed. Rotational analysis of the main and extra bands reveals that the 2 (1)Pi(u) v' = 5 - 8 levels are significantly perturbed, mainly by the 3 (3)Sigma(u)(+)(1 u) state and also by the 2 (3)Pi(u)(1 u) state. For the major perturber, 3 (3)Sigma(u)(+)(1 u), the intensity borrowing has been found to be facilitated by the 2 (1)Pi(u)-3 (3)Sigma(u)(+)(1 u) potential energy curve crossing near 21,100 cm(-1). For the vibronic-band intensities of the 2 (3)Pi(u)(1 u) v' <-- X (1)Sigma(g)(+) v' = 0 transitions observed in this spectral region, intensity borrowing was most effective when the 2 (3)Pi(u)(1 u) levels were close to the 3 (3)Sigma(u)(+)(1 u) levels. A deperturbation fit for the perturbing bands has provided the 2 (1)Pi(u)-3 (3)Sigma(u)(+)(1 u) coupling constants.  相似文献   

9.
Five-dimensional nonadiabatic quantum dynamics studies have been carried out on two new potential energy surfaces of S(2)((1)A(')) and T(7)((3)A(")) states for the title oxygen molecules collision with coplanar configurations, along with the spin-orbit coupling between them. The ab initio calculations are based on complete active state second-order perturbation theory with the 6-31+G(d) basis set. The calculated spin-orbit induced transition probability as a function of collision energy is found to be very small for this energy pooling reaction. The rate constant obtained from a uniform J-shifting approach is compared with the existing theoretical and experimental data, and the spin-orbit effect is also discussed in this electronic energy-transfer process.  相似文献   

10.
Quantum coupled-channel scattering calculations have been carried out at ultralow energies (down to 10(-5) K) for rotational quenching of ionic and spin-stretched states of the lithium dimer in collision with He atoms. Marked cross section differences, to be related to changes in their interactions with He, have been observed with respect to the singlet case while little changes in the collisional behavior are seen to occur upon ionization when the spin-stretched target is considered. Both effects originate from an interplay of structural and dynamical features of the colliding partners which are analyzed in detail.  相似文献   

11.
We report results from measurements for differential and integral cross sections of the unresolved (1)B(1u) and (3)E(2g) electronic states and the (1)E(1u) electronic state in benzene. The energy range of this work was 10-200 eV, while the angular range of the differential cross sections was ~3°-130°. To the best of our knowledge there are no other corresponding theoretical or experimental data against which we can compare the present results. A generalized oscillator strength analysis was applied to our 100 and 200 eV differential cross section data, for both the (1)B(1u) and (1)E(1u) states, with optical oscillator strengths being derived in each case. The respective optical oscillator strengths were found to be consistent with many, but not all, of the earlier theoretical and experimental determinations. Finally, we present theoretical integral cross sections for both the (1)B(1u) and (1)E(1u) electronic states, as calculated within the BEf-scaling formalism, and compare them against relevant results from our measurements. From that comparison, an integral cross section for the optically forbidden (3)E(2g) state is also derived.  相似文献   

12.
The emission spectrum of the D(2) molecule has been studied at high resolution in the vacuum ultraviolet region 78.5-102.7 nm. A detailed analysis of the two D (1)Pi(u)-->X (1)Sigma(g) (+) and D(') (1)Pi(u) (-)-->X (1)Sigma(g) (+) electronic band systems is reported. New and improved values of the level energies of the two upper states have been derived with the help of the program IDEN [V. I. Azarov, Phys. Scr. 44, 528 (1991); 48, 656 (1993)], originally developed for atomic spectral analysis. A detailed comparison is made between the observed energy levels and solutions of coupled equations using the newest ab initio potentials by Wolniewicz and co-workers [J. Chem. Phys. 103, 1792 (1995); 99, 1851 (1993); J. Mol. Spectros. 212, 208 (2002); 220, 45 (2003)] taking into account the nonadiabatic coupling terms for the D (1)Pi(u) state with the lowest electronic states B (1)Sigma(u) (+), C (1)Pi(u), and B(') (1)Sigma(u) (+). A satisfactory agreement has been found for most of the level energies belonging to the D and D(') states. The remaining differences between observation and theory are probably due to nonadiabatic couplings with other higher electronic states which were neglected in the calculations.  相似文献   

13.
A three-dimensional global potential energy surface for the ground (X (1)Sigma(+)(g))electronic state of HgH(2) is constructed from more than 13,00 ab initio points. These points are generated using an internally contracted multireference configuration interaction method with the Davidson correction and a large basis set. Low-lying vibrational energy levels of HgH(2), HHgD, and HgD(2) calculated using the Lanczos algorithm are found to be in good agreement with the available experimental band origins. The majority of the vibrational energy levels up to 9000 cm(-1) are assigned with normal mode quantum numbers. Our results indicate a gradual transition for the stretching vibrations from the normal mode regime at low energies to the local mode regime near 9000 and 8000 cm(-1) for HgH(2) and HgD(2), respectively, as evidenced by a decreasing energy gap between the (0,0,n(3)) and (1,0,n(3)-1) vibrational states and bifurcation of the corresponding wave functions.  相似文献   

14.
An analytical potential energy surface (PES) representation of the O(+)((4)S)+H(2)(X (1)Sigma(g) (+)) system was developed by fitting around 600 CCSD(T)/cc-pVQZ ab initio points. Rate constant calculations for this reaction and its isotopic variants (D(2) and HD) were performed using the quasiclassical trajectory (QCT) method, obtaining a good agreement with experimental data. Calculations conducted to determine the cross section of the title reaction, considering collision energies (E(T)) below 0.3 eV, also led to good accord with experiments. This PES appears to be suitable for kinetics and dynamics studies. Moreover, the QCT results show that, although the hypotheses of a widely used capture model are not satisfied, the resulting expression for the cross section can be applied within a suitable E(T) interval, due to errors cancellation. This could be a general situation regarding the application of this simple model to ion-molecule processes.  相似文献   

15.
Fluorescence excitation spectra produced through photoexcitation of N(2) using synchrotron radiation in the spectral region between 80 and 100 nm have been studied. Two broadband detectors were employed to simultaneously monitor fluorescence in the 115-320 nm and 300-700 nm regions, respectively. The peaks in the vacuum ultraviolet fluorescence excitation spectra are found to correspond to excitation of absorption transitions from the ground electronic state to the b (1)Pi(u), b(') (1)Sigma(u) (+), c(n) (1)Pi(u) (with n=4-8), c(n) (') (1)Sigma(u) (+) (with n=5-9), and c(4) (')(v('))(1)Sigma(u) (+) (with v(')=0-8) states of N(2). The relative fluorescence production cross sections for the observed peaks are determined. No fluorescence has been produced through excitation of the most dominating absorption features of the b-X transition except for the (1,0), (5,0), (6,0), and (7,0) bands, in excellent agreement with recent lifetime measurements and theoretical calculations. Fluorescence peaks, which correlate with the long vibrational progressions of the c(4) (') (1)Sigma(u) (+) (with v(')=0-8) and the b(') (1)Sigma(u) (+) (with v(') up to 19), have been observed. The present results provide important information for further unraveling of complicated and intriguing interactions among the excited electronic states of N(2). Furthermore, solar photon excitation of N(2) leading to the production of c(4) (')(0) may provide useful data required for evaluating and analyzing dayglow models relevant to the interpretation of c(4) (')(0) in the atmospheres of Earth, Jupiter, Saturn, Titan, and Triton.  相似文献   

16.
Six new potential energy surfaces of four singlet states and two triplet states for the title oxygen molecule reaction along with the spin-orbit coupling among them have been constructed from the complete active space second-order perturbation theory with a 6-311+G(d) basis. Accurate integral cross sections are calculated with a full six-dimensional nonadiabatic time-dependent quantum wave packet method. The thermal rate constant based on the integral cross sections agrees well with the result of the experimental measurements, and the intersystem crossing effects are also discussed in this electronic energy-transfer process.  相似文献   

17.
New electronic structure calculations for the transition-state region of the lowest ozone potential energy surface are reported. A two-dimensional potential energy surface in the asymptotic channel is calculated with the O(2) bond distance being fixed. The calculations are performed at the multireference average quadratic coupled cluster level of theory using full-valence complete active space self-consistent field wave functions and the augmented correlation consistent polarized V6Z atomic basis set. The general shape of the potential energy surface as predicted in earlier studies, that is, a narrow transition state below the O+O(2) asymptote, is confirmed by the present calculations. The transition state is 181 cm(-1) below the asymptote and 72 cm(-1) above the van der Waals-like minimum. The changes in the O+O(2)-->O(3) (*) capture cross section and rate constant when the new potential energy surface is employed are investigated by means of classical trajectory calculations.  相似文献   

18.
Oxidation reaction of the ground state Si atom was studied by using a crossed molecular beam technique at 13.0 kJ/mol of collision energy. The Si atomic beam was generated by laser vaporization and crossed with the oxygen molecular beam at right angle. Products at the crossing region were detected by the laser-induced fluorescence (LIF). The LIF of SiO(A 1 Pi-X 1 Sigma+) was used to determine the vibrational state distribution of the electronic ground state, SiO(X 1 Sigma+). The determined distribution was inverted with the maximum population at v"=4, and in good agreement with the recent quasiclassical trajectory calculation on the singlet potential energy surface. The agreement suggested that an abstraction mechanism is dominant at the collision energy studied here. One of the counterproducts, O(3PJ), was also observed by the vacuum ultraviolet LIF and the distribution of the spin-orbit levels were determined. The formation of O(3PJ) was consistent with the significant population of v"=7 and 8 states of SiO, which could be explained by the presence of the triplet product channel with higher exothermicity.  相似文献   

19.
The C(2) molecule exhibits unusual bonding and several low-lying excited electronic states, making the prediction of its potential energy curves a challenging test for quantum chemical methods. We report full configuration interaction results for the X (1)Sigma(g) (+), B (1)Delta(g), and B(') (1)Sigma(g) (+) states of C(2), which exactly solve the electronic Schrodinger equation within the space spanned by a 6-31G( *) basis set. Within the D(2h) subgroup used by most electronic structure programs, these states all have the same symmetry ((1)A(g)), and all three states become energetically close for interatomic distances beyond 1.5 A. The quality of several single-reference ab initio methods is assessed by comparison to the benchmark results. Unfortunately, even coupled-cluster theory through perturbative triples using an unrestricted Hartree-Fock reference exhibits large nonparallelity errors (>20 kcal mol(-1)) for the ground state. The excited states are not accurately modeled by any commonly used single-reference method, nor by configuration interaction including full quadruple substitutions. The present benchmarks will be helpful in assessing theoretical methods designed to break bonds in ground and excited electronic states.  相似文献   

20.
The reaction pathway and the nascent CaH product distribution in the reaction Ca(4s3d (1)D)+H(2)-->CaH(X (2)Sigma(+))+H are obtained using a pump-probe technique. The Ca atom is first prepared in the 3 (1)D state by a two-photon absorption, and then in brief time delay the laser-induced fluorescence of the reaction product CaH is monitored. The CaH(v=0,1) distributions appear to be single peaked, as characterized by Boltzmann rotational temperature of 807+/-38 K (v=0) and 684+/-77 K (v=1). The vibrational population ratio of CaH(v=0)/CaH(v=1) is determined to be 3.3+/-0.1, while the v=2 population is not detectable. The fractions of the available energy partitioning into rotation, vibration, and translation are estimated to be 0.36+/-0.05, 0.28+/-0.04, and 0.36+/-0.05, respectively. With the aid of the potential energy surfaces calculations, the current reaction should favor a near C(2v) collision configuration. The temperature dependence measurement yields a positive slope, indicative of the reaction occurrence without any potential barrier. The colliding species are anticipated to follow an attractive 1B(2) (or 2A') surface and then transit nonadiabatically to the reactive ground state surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号