首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quasielastic neutron scattering measurements have been made on some micellar aggregates. It is shown that the observed spectra arise almost exclusively from monomer motions in the aggregates. Two illustrative systems were studied, direct micelles of tetradecyl trimethyl ammonium bromide in water, and reverse micelles of aerosol OT in cyclohexane with different amounts of water solubilised inside the micellar core. For the aerosol OT micelles, the translational diffusion is fast (8×10?10 m2.sec?1) and independent of the size of the water pool. Rotational correlation times are of the order of 4×10?11 sec. At high water contents the water in these pools is similar to bulk aqueous electrolytic solutions. For the tetradecyl trimethyl ammonium bromide micelles the translational diffusion constant was found to be 5×10?10 m2.sec?1.  相似文献   

2.
The general trend in soft matter is to study systems of increasing complexity which are more technologically and biologically relevant. This is facilitated by the capability of quasielastic neutron scattering (QENS) to selectively probe spatially resolved dynamical modes at a molecular level. The large number of recent publications using QENS for investigating complex and multi-component soft matter systems, serves as recognition of the suitability of this technique by the scientific community. Exploiting its complementarity with molecular dynamics (MD) simulations and other experimental techniques is the basis of a successful methodology for this scientific challenge. We illustrate the potential of QENS with three kinds of soft materials whose structural units increase in size/complexity: lipids, polymers and biomolecules.  相似文献   

3.
We present a model for quasielastic neutron scattering (QENS) by an aqueous solution of compact and inflexible molecules. This model accounts for time-dependent spatial pair correlations between the atoms of the same as well as of distinct molecules and includes all coherent and incoherent neutron scattering contributions. The extension of the static theory of the excluded volume effect [A. K. Soper, J. Phys.: Condens. Matter 9, 2399 (1997)] to the time-dependent (dynamic) case allows us to obtain simplified model expressions for QENS spectra in the low Q region in the uniform fluid approximation. The resulting expressions describe the quasielastic small-angle neutron scattering (QESANS) spectra of D(2)O solutions of native and methylated cyclodextrins well, yielding in particular translational and rotational diffusion coefficients of these compounds in aqueous solution. Finally, we discuss the full potential of the QESANS analysis (that is, beyond the uniform fluid approximation), in particular, the information on solute-solvent interactions (e.g., hydration shell properties) that such an analysis can provide, in principle.  相似文献   

4.
B. Cvikl 《Liquid crystals》1987,2(2):149-165
The model of rapid orientational fluctuations of the molecular long axis in liquid crystals, based upon the solution of the one-dimensional problem of the random walk of a particle between two perfectly reflecting barriers, is suggested and in conjunction with the translational diffusion of the molecular centre of mass and also uniaxial rotational diffusion, utilized for the evaluation of the incoherent scattering function, as well as EISF, appropriate to smectic A and nematic phases, and the comparison with measurements is made. On the basis of published measurements it is concluded that the molecules in the smectic A phase of DTBBA are subject to long axis orientational fluctuations between two potential barriers with an apex angle of about 100°.  相似文献   

5.
We present a quasielastic neutron scattering (QENS) investigation of the component dynamics in an aqueous Poly(vinyl methyl ether) (PVME) solution (30% water content in weight). In the glassy state, an important shift in the Boson peak of PVME is found upon hydration. At higher temperatures, the diffusive-like motions of the components take place with very different characteristic times, revealing a strong dynamic asymmetry that increases with decreasing T. For both components, we observe stretching of the scattering functions with respect to those in the bulk and non-Gaussian behavior in the whole momentum transfer range investigated. To explain these observations we invoke a distribution of mobilities for both components, probably originated from structural heterogeneities. The diffusive-like motion of PVME in solution takes place faster and apparently in a more continuous way than in bulk. We find that the T-dependence of the characteristic relaxation time of water changes at T ? 225 K, near the temperature where a crossover from a low temperature Arrhenius to a high temperature cooperative behavior has been observed by broadband dielectric spectroscopy (BDS) [S. Cerveny, J. Colmenero and A. Alegri?a, Macromolecules, 38, 7056 (2005)]. This observation might be a signature of the onset of confined dynamics of water due to the freezing of the PVME dynamics, that has been selectively followed by these QENS experiments. On the other hand, revisiting the BDS results on this system we could identify an additional "fast" process that can be attributed to water motions coupled with PVME local relaxations that could strongly affect the QENS results. Both kinds of interpretations, confinement effects due to the increasing dynamic asymmetry and influence of localized motions, could provide alternative scenarios to the invoked "strong-to-fragile" transition.  相似文献   

6.
The intrachain and interchain vibrations below 900 cm?1 of polydimethylsiloxane (PDMS) have been studied by slow neutron inelastic scattering. A composite motion observed at +25°C for the methyl groups corresponds to nearly free rotation about the threefold axis of symmetry together with a large-amplitude rotation of the entire methyl group. At ?123°C, rotation about the threefold axis evolves to a torsional oscillation. The large-amplitude rotation evolves to the skeletal vibrations of a helical conformation. Vestiges of the cooperative skeletal vibrations of the conformation at ?123°C persist into the 25°C spectrum. The results indicate the presence of interrupted helical conformations at 25°C, which result from thermal disordering of the low temperature helices. The effects of crosslinking, low molecular-weight oils, and silica filler on the freedom of the methyl group motions and on skeletal vibrations have been determined. The effects of different crosslinking agents and different relative amounts of filler and oil on both the macroscopic physical properties and the observed molecular motions of PDMS can also be interpreted in terms of an interrupted helix.  相似文献   

7.
8.
The collective dynamics of liquid deuterium fluoride are studied by means of high-resolution quasielastic and inelastic neutron scattering over a range of four decades in energy transfer. The spectra show a low-energy coherent quasielastic component which arises from correlated stochastic motions as well as a broad inelastic feature originating from overdamped density oscillations. While these results are at variance with previous works which report on the presence of propagating collective modes, they are fully consistent with neutron diffraction, nuclear magnetic resonance, and infrared/Raman experiments on this prototypical hydrogen-bonded fluid.  相似文献   

9.
Using the inverse geometry spectrometer QENS at the Intense Pulsed Neutron Source of the Argonne National Laboratory, we collected quasielastic and inelastic neutron scattering spectra of hydrated tricalcium and dicalcium silicate, the main components of ordinary Portland cement. Data were obtained at different curing time, from a few hours to several months. Both the quasielastic and inelastic spectra have been analyzed at the same time according to the relaxing cage model, which is a model developed to describe the dynamics of water at supercooled temperatures. Short-time and long-time dynamics of hydration water in hydrated cement pastes as a function of the curing time have been simultaneously obtained. The results confirm the findings reported in previous experiments showing that it is possible to fit consistently the quasielastic and inelastic spectra giving insights on the effect of the curing time on the short-time vibrational dynamics of hydration water.  相似文献   

10.
We have investigated the dynamics of water confined in a molecular sieve, with a cylindrical pore diameter of 10 A, by means of quasielastic neutron scattering (QENS). Both the incoherent and coherent intermediate scattering functions I(Q,t) were determined by time-of-flight QENS and the neutron spin-echo technique, respectively. The results show that I(Q,t) is considerably more stretched in time with a slightly larger average relaxation time in the case of coherent scattering. From the Q dependence of I(Q,t) it is clear that the observed dynamics is almost of an ordinary translational nature. A comparison with previous dielectric measurements suggests a possible merging of the alpha and beta relaxations of the confined water at T=185 K, although the alpha relaxation cannot be directly observed at lower temperatures due to the severe confinement. The present results are discussed in relation to previous results for water confined in a Na-vermiculite clay, where the average relaxation time from spin-echo measurements was found to be slower than in the present system (particularly at low temperatures).  相似文献   

11.
The present article gives an overview of analytical and simulation approaches to describe the relaxation dynamics of proteins. Particularly emphasised are recent developments of theoretical models, such as fractional Brownian dynamics. The latter connects dynamical events seen on the pico- to nanosecond time scale, accessible to quasielastic neutron scattering, and functional dynamics of proteins on much longer time scales.  相似文献   

12.
The dynamics of the pyridinium cation in thiourea pyridinium nitrate inclusion compound has been studied using quasielastic neutron scattering in a wide temperature range (10-350 K). The elastic incoherent structure factor was determined from neutron backscattering and time-of-flight measurements and its analysis allows to describe in detail the geometry of the motions of the pyridinium cation. Our study reveals two types of motion having two different correlation times. The pyridinium cation reorients about the axis perpendicular to its molecular plane over inequivalent threefold potential energy barriers and also executes a faster out-of-plane motion about the axis passing through two opposite atoms of the ring.  相似文献   

13.
Time-resolved optical spectroscopy is used to investigate the reorientation of three rigid probes and one labeled chain in bulk polystyrene. Orientational correlation times for these probes and labels are found to be in the range of 10?8–10?10 s at temperatures of 180–300°C. Consistent with previous studies, the attachment of a chromophore into the chain backbone slows its dynamics by about an order of magnitude. The temperature dependences of the correlation times are similar to the temperature dependence of the viscosity. When combined with probe reorientation times near and below Tg, these results indicate that probe reorientation tracks the temperature dependence of the viscosity quite well over twelve decades in time. In contrast, literature results for the translational diffusion of similarly sized probes indicates a substantially weaker temperature dependence near Tg. Thus it appears that a fundamental change in the mechanism of probe motion occurs near Tg. © 1994 John Wiley & Sons, Inc.  相似文献   

14.
Quasielastic neutron scattering was used to probe the diffusion of water molecules in 2.3 molal CaCl(2) solution confined in 100% hydrated Vycor glass in the temperature range of 220 to 260 K. We observed a gradual transition from the restricted diffusion regime at lower temperatures to unrestricted diffusion regime at higher temperatures. The diffusion parameters were compared with the data on pure water confined in Vycor available in the literature. We found that the effect of dissolved ions onto the diffusion dynamics of the water molecules in the solution was amplified by confinement by at least an order of magnitude compared to bulk form, even though the dissolved ions were found to have little effect on the spatial characteristics of the restricted diffusion process of water molecules. At 260 K, the local diffusion coefficient of water molecules in the H(2)O-CaCl(2) confined in Vycor was only 6% of the value reported for pure water confined in Vycor.  相似文献   

15.
Quasielastic neutron scattering experiments were carried out using the multichopper time-of-flight spectrometer V3 at the Hahn-Meitner Institut, Germany and the backscattering spectrometer at Forschungszentrum Julich, Germany. Activation energies for CH(3)X, X=F, Cl, Br, and I, were obtained. In combination with results from previous inelastic neutron scattering experiments the data were taken to describe the dynamics of the halides in terms of two different models, the single particle model and the coupling model. Coupled motions of methyl groups seem to explain the dynamics of the methyl fluoride and chloride; however, the coupling vanishes with the increase of the mass of the halide atom in CH(3)Br and CH(3)I.  相似文献   

16.
One of the outstanding challenges presented by liquid water is to understand how molecules can move on a picosecond time scale despite being incorporated in a three-dimensional network of relatively strong H-bonds. This challenge is exacerbated in the supercooled state, where the dramatic slowing down of structural dynamics is reminiscent of the, equally poorly understood, generic behavior of liquids near the glass transition temperature. By probing single-molecule dynamics on a wide range of time and length scales, quasielastic neutron scattering (QENS) can potentially reveal the mechanistic details of water's structural dynamics, but because of interpretational ambiguities this potential has not been fully realized. To resolve these issues, we present here an extensive set of high-quality QENS data from water in the range 253-293 K and a corresponding set of molecular dynamics (MD) simulations to facilitate and validate the interpretation. Using a model-free approach, we analyze the QENS data in terms of two motional components. Based on the dynamical clustering observed in MD trajectories, we identify these components with two distinct types of structural dynamics: picosecond local (L) structural fluctuations within dynamical basins and slower interbasin jumps (J). The Q-dependence of the dominant QENS component, associated with J dynamics, can be quantitatively rationalized with a continuous-time random walk (CTRW) model with an apparent jump length that depends on low-order moments of the jump length and waiting time distributions. Using a simple coarse-graining algorithm to quantitatively identify dynamical basins, we map the newtonian MD trajectory on a CTRW trajectory, from which the jump length and waiting time distributions are computed. The jump length distribution is gaussian and the rms jump length increases from 1.5 to 1.9 A? as the temperature increases from 253 to 293 K. The rms basin radius increases from 0.71 to 0.75 A? over the same range. The waiting time distribution is exponential at all investigated temperatures, ruling out significant dynamical heterogeneity. However, a simulation at 238 K reveals a small but significant dynamical heterogeneity. The macroscopic diffusion coefficient deduced from the QENS data agrees quantitatively with NMR and tracer results. We compare our QENS analysis with existing approaches, arguing that the apparent dynamical heterogeneity implied by stretched exponential fitting functions results from the failure to distinguish intrabasin (L) from interbasin (J) structural dynamics. We propose that the apparent dynamical singularity at ~220 K corresponds to freezing out of J dynamics, while the calorimetric glass transition corresponds to freezing out of L dynamics.  相似文献   

17.
Abstract

When interpreting quasielastic neutron scattering (QNS) spectra of liquid crystals with complicated and flexible molecules, it seems absolutely necessary to take into consideration the internal reorientations. The present QNS study concerns TCDCBPh/di-(4-n-butyloxyphenyl) trans-cyclohexane-1,4-dicarboxylate). It contains a cyclohexane ring which possesses a high internal mobility. As a probing parameter we use the ‘excess elasticity’ p which in a way represents the elastic form-factor. We make drastic assumptions: we equalize all partial correlation times, we allow each hydrogen atom to participate in one reorientation only, and we ignore possible couplings between reorientations. Then we analyse the behaviour with temperature of the p parameter for eleven models in which either all specified molecular fragments reorient or some of them reorient and others are at rest. In the crystal, far below melting, all internal stochastic mobilities seem to be at rest. However, still 30°C below melting, the cyclohexane ring starts large angle internal deformations which have a stochastic character. It seems that some fragments in the molecules (e.g., benzene rings and/or alkyl terminal groups) start to reorient a few degrees before melting. This is connected with the formation of a ‘mobile’ crystal phase, just before melting. Then all internal reorientations become free, and one cannot observe much difference between the smectic A phase and the nematic phase. This study shows that the cyclohexane ring is the most mobile sub-entity in the TCDCBPh molecule. Observations by polarized microscopy seem to corroborate our claim for the existence of a “mobile” phase just before melting. The literature information about the phase sequence is C 107°C SA 156°C N 209°C I.  相似文献   

18.
Quasielastic neutron scattering was utilized to investigate the influence of confinement on polymer dynamics. Poly(methyl phenyl siloxane) chains were studied in the bulk as well as severely confined within the approximately 1-2 nm interlayer spacing of intercalated polymer/layered organosilicate nanohybrids. The temperature dependence of the energy resolved elastic scattering measurements for the homopolymer and the nanocomposites exhibit two distinct relaxation steps: one due to the methyl group rotation and one that corresponds to the phenyl ring flip and the segmental motion. Quasielastic incoherent measurements show that the very local process of methyl rotation is insensitive to the polymer glass transition temperature and exhibits a wave-vector independent relaxation time and a low activation energy, whereas it is not affected at all by the confinement. At temperatures just above the calorimetric glass transition temperature, the observed motion is the phenyl ring motion, whereas the segmental motion is clearly identified for temperatures about 60 K higher than the glass transition temperature. For the nanohybrid, the segmental motion is found to be strongly coupled to the motion of the surfactant chains for temperatures above the calorimetric glass transition temperature of the bulk polymer. However, the mean square displacement data show that the segmental motion in confinement is faster than that of the bulk polymer even after the contribution of the surfactant chains is taken into consideration.  相似文献   

19.
The structure factor of a poly(ethylene-propylene)poly(dimethylsiloxane) diblock copolymer has been measured by SANS as a function of temperature and pressure. In contradiction to the random phase approximation the conformational compressibility exhibits a pronounced maximum at the order-disorder phase transition. The phase boundary shows an unusual shape: with increasing pressure it first decreases and then increases. Its origin is an increase in, respectively, the entropic and the enthalpic part of the Flory-Huggins interaction parameter. The Ginzburg parameter describing the limit of the mean-field approximation is not influenced by pressure.  相似文献   

20.
Measurements on the concentration dependence of the zero-angle X-ray scattering from liquid mixtures of water and methanol at 25°C and atmospheric pressure are compared with theoretical data calculated from thermodynamic quantities. Good agreement between theory and experiment is observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号