首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experimental realization of quantum information processing in the field of nuclear magnetic resonance (NMR) has been well established. Implementation of conditional phase-shift gate has been a significant step, which has lead to realization of important algorithms such as Grover's search algorithm and quantum Fourier transform. This gate has so far been implemented in NMR by using coupling evolution method. We demonstrate here the implementation of the conditional phase-shift gate using transition selective pulses. As an application of the gate, we demonstrate Grover's search algorithm and quantum Fourier transform by simulations and experiments using transition selective pulses.  相似文献   

2.
Non-local implementations of quantum gates are a vital part of quantum networks. We find an optimal non-local implementation of quantum functions, the quantum gate equivalent of a switch statement. Then, we apply this result to the Deutsch-Jozsa problem, obtaining a distributed Deutsch-Jozsa algorithm and we show the relative efficiency improvement. As an application, we find a non-cooperative game based upon the original Deutsch-Jozsa problem where a classical agent has at most a 50% probability of winning, while a quantum agent can win every time.  相似文献   

3.
In this work controlled phase shift gates are implemented on a qaudrupolar system, by using non-adiabatic geometric phases. A general procedure is given, for implementing controlled phase shift gates in an ‘N’ level system. The utility of such controlled phase shift gates, is demonstrated here by implementing 3-qubit Deutsch–Jozsa algorithm on a spin-7/2 quadrupolar nucleus oriented in a liquid crystal matrix.  相似文献   

4.
We present a formula for an infinite number of universal quantum logic gates, which are 44 by 44 unitary solutions to the Yang–Baxter (Y–B) equation. We obtain this family from a certain representation of the cyclic group of order nn. We then show that this discrete   family, parametrized by integers nn, is in fact, a small sub-class of a larger continuous   family, parametrized by real numbers θθ, of universal quantum gates. We discuss the corresponding Yang-Baxterization and related symmetries in the concomitant Hamiltonian.  相似文献   

5.
Arvind  Kavita Dorai  Anil Kumar 《Pramana》2001,56(5):L705-L713
A scheme to execute an n-bit Deutsch-Jozsa (DJ) algorithm using n qubits has been implemented for up to three qubits on an NMR quantum computer. For the one- and the two-bit Deutsch problem, the qubits do not get entangled, and the NMR implementation is achieved without using spin-spin interactions. It is for the three-bit case, that the manipulation of entangled states becomes essential. The interactions through scalar J-couplings in NMR spin systems have been exploited to implement entangling transformations required for the three bit DJ algorithm.  相似文献   

6.
We introduce a novel algorithm for the task of coherently controlling a quantum mechanical system to implement any chosen unitary dynamics. It performs faster than existing state of the art methods by 1 to 3 orders of magnitude (depending on which one we compare to), particularly for quantum information processing purposes. This substantially enhances the ability to both study the control capabilities of physical systems within their coherence times, and constrain solutions for control tasks to lie within experimentally feasible regions. Natural extensions of the algorithm are also discussed.  相似文献   

7.
We present a detailed study of the dynamics of light in passive nonlinear resonators with shallow and deep intracavity periodic modulation of the refractive index in both longitudinal and transverse directions of the resonator. We investigate solutions localized in the transverse direction (so-called Bloch cavity solitons) by means of envelope equations for underlying linear Bloch modes and solving Maxwell’s equations directly. Using a round-trip model for forward and backward propagating waves we review different types of Bloch cavity solitons supported by both focusing (at normal diffraction) and defocussing (at anomalous diffraction) nonlinearities in a cavity with a weak-contrast modulation of the refractive index. Moreover, we identify Bloch cavity solitons in a Kerr-nonlinear all-photonic crystal resonator solving Maxwell’s equations directly. In order to analyze the properties of Bloch cavity solitons and to obtain analytical access we develop a modified mean-field model and prove its validity. In particular, we demonstrate a substantial narrowing of Bloch cavity solitons near the zero-diffraction regime. Adjusting the quality factor and resonance frequencies of the resonator optimal Bloch cavity solitons in terms of width and pump energy are identified.  相似文献   

8.
It has been widely assumed that one-qubit gates in spin-based quantum computers suffer from severe technical difficulties. We show that one-qubit gates can, in fact, be generated using only modest and presently feasible technological requirements. Our solution uses only global magnetic fields and controllable Heisenberg exchange interactions, thus circumventing the need for single-spin addressing.  相似文献   

9.
细菌视紫红质在全光逻辑器件中的研究与应用   总被引:1,自引:0,他引:1  
介绍了细菌视紫红质在逻辑器件中的研究与应用,总结了利用细菌视紫红质研究逻辑器件的方法,明确进一步研究逻辑器件的发展方向是智能化器件的开发.  相似文献   

10.
We report on a fiber-optics implementation of the Deutsch-Jozsa and Bernstein-Vazirani quantum algorithms for 8-point functions. The measured visibility of the 8-path interferometer is about 97.5%. Potential applications of our setup to quantum communication or cryptographic protocols using several qubits are discussed.  相似文献   

11.
Methods for measuring longitudinal relaxation times of protons in heavily overlapped 1H NMR spectra are introduced and exemplified using a solution of cholesteryl acetate. The methods are based on 1-dimensional and 2-dimensional maximum quantum NMR spectroscopy (MAXY), which makes possible the selective detection of CH, CH2 and CH3 1H NMR resonances. A modification of the BIRD pulse sequence to achieve selective inversion of protons bonded to either 12C or 13C is given. The approach should find application in studies of molecular dynamics where isotopic enrichment is not possible and the level of available sample dictates the use of 1H NMR spectroscopy.  相似文献   

12.
Solitons all-optical logic NAND and XNOR gates using semiconductor optical amplifiers-assisted Mach–Zehnder interferometers are computationally analyzed at a data rate of 80 Gb/s. The investigation of the output quality factor is included. All-optical logic gates are capable of operating at 80 Gb/s with logical correctness and acceptable quality.  相似文献   

13.
The idea of replacing traditional silicon-based electronic components with the ones assembled by organic molecules to further scale down the electric circuits has been attracting extensive research focuses. Among the molecularly assembled components, the design of molecular logic gates with simple structure and high Boolean computing speed remains a great challenge. Here, by using the state-of-the-art nonequilibrium Green's function theory in conjugation with first-principles method, the spin transport properties of single-molecule junctions comprised of two serially connected transition metal dibenzotetraaza[14]annulenes(TM(DBTAA), TM = Fe, Co) sandwiched between two single-walled carbon nanotube electrodes are theoretically investigated. The numerical results show a close dependence of the spin-resolved current-voltage characteristics on spin configurations between the left and right molecular kernels and the kind of TM atom in TM(DBTAA)molecule. By taking advantage of spin degree of freedom of electrons, NOR or XNOR Boolean logic gates can be realized in Fe(DBTAA) and Co(DBTAA) junctions depending on the definitions of input and output signals. This work proposes a new kind of molecular logic gates and hence is helpful for further miniaturization of the electric circuits.  相似文献   

14.
Hadamard spectroscopy has earlier been used to speed-up multi-dimensional NMR experiments. In this work, we speed-up the two-dimensional quantum computing scheme, by using Hadamard spectroscopy in the indirect dimension, resulting in a scheme which is faster and requires the Fourier transformation only in the direct dimension. Two and three qubit quantum gates are implemented with an extra observer qubit. We also use one-dimensional Hadamard spectroscopy for binary information storage by spatial encoding and implementation of a parallel search algorithm.  相似文献   

15.
16.
We discuss the ground state phase transition between an antiferromagnet and a valence-bond solid in a two-dimensional spin-1/2 XY model with a four-spin interaction. This transition has been proposed as a candidate for a deconfined quantum-critical point. We analyze quantum Monte Carlo data in order to accurately characterize the transition. The central question that remains to be answered is whether the transition really is continuous, or whether it is actually weakly first-order. We present the current status of both ground state and finite-temperature calculations. Based on the results, we discuss possible scenarios for the transition, none of which is consistent with deconfined quantum-criticality. However, we argue that a deconfined quantum-critical point may be located nearby in an extended parameter space.We also discuss the staggered Ising phase obtaining in the limit of strong four-spin coupling.  相似文献   

17.
In conduction of parallel logic, arithmetic and algebraic operations, optics has already proved its successful role. Since last few decades a number of established methods on optical data processing were proposed and to implement such processors different data encoding/decoding techniques have also been reported. Currently frequency encoding technique is found be a promising as well as a faithful mechanism for the conversion of all-optical processing as the frequency of light remains unaltered after refection, refraction, absorption, etc. during the transmission of light. There are already proposed some frequency encoded optical logic gates. In this communication the authors propose a new and different concept of frequency encoded optical logic gates and optical flip-flop using the non-linear function of semiconductor optical amplifier.  相似文献   

18.
The EPR experiment is investigated within the abstract language of relativistic quantum physics (relativistic quantum logic). First we show that the principles of reality (R) and locality (L) contradict the validity principle (Q) of quantum physics. A reformulation of this argument is then given in terms of relativistic quantum logic which is based on the principlesR andQ. It is shown that the principleL must be replaced by a convenient relaxation ¯L, by which the contradiction can be eliminated. On the other hand this weak locality principle ¯L does not contradict Einstein causality and is thus in accordance with special relativity.  相似文献   

19.
20.
In papers [Jafarizadehn and Salimi, Ann. Phys. 322, 1005 (2007) and J. Phys. A: Math. Gen. 39, 13295 (2006)], the amplitudes of continuous-time quantum walk (CTQW) on graphs possessing quantum decomposition (QD graphs) have been calculated by a new method based on spectral distribution associated with their adjacency matrix. Here in this paper, it is shown that the CTQW on any arbitrary graph can be investigated by spectral analysis method, simply by using Krylov subspace-Lanczos algorithm to generate orthonormal bases of Hilbert space of quantum walk isomorphic to orthogonal polynomials. Also new type of graphs possessing generalized quantum decomposition (GQD) have been introduced, where this is achieved simply by relaxing some of the constrains imposed on QD graphs and it is shown that both in QD and GQD graphs, the unit vectors of strata are identical with the orthonormal basis produced by Lanczos algorithm. Moreover, it is shown that probability amplitude of observing the walk at a given vertex is proportional to its coefficient in the corresponding unit vector of its stratum, and it can be written in terms of the amplitude of its stratum. The capability of Lanczos-based algorithm for evaluation of CTQW on graphs (GQD or non-QD types), has been tested by calculating the probability amplitudes of quantum walk on some interesting finite (infinite) graph of GQD type and finite (infinite) path graph of non-GQD type, where the asymptotic behavior of the probability amplitudes at the limit of the large number of vertices, are in agreement with those of central limit theorem of [Phys. Rev. E 72, 026113 (2005)]. At the end, some applications of the method such as implementation of quantum search algorithms, calculating the resistance between two nodes in regular networks and applications in solid state and condensed matter physics, have been discussed, where in all of them, the Lanczos algorithm, reduces the Hilbert space to some smaller subspaces and the problem is investigated in the subspace with maximal dimension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号