首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Landau-Herring method is applied to derive an analytical expression for the exchange interaction potential of a polar molecule with its own dipole-bound anion with account of the relative orientation of the dipole moments of the molecular cores. The potential obtained is used to calculate the cross-section of the resonant charge exchange of a polar molecule with a dipole-bound anion. The influence of the rotation of the molecular cores on the charge exchange cross section is analyzed. A new mechanism of transformation of the charge exchange reaction from quasi-resonant to resonant due to the compensation of the resonance detuning by changes in the rotational states of the colliding molecules is considered.  相似文献   

2.
The electron transport properties of cis-polyacetylene and cis-polyacetylene based molecular wires (oligo(cyclopentadiene), oligo(pyrrole), and oligo(furan)) have been studied theoretically using a combination of density-functional theory and non-equilibrium Green′s functions method. The results demonstrate that the introduction of bridging group X (X=CH2, NH, and O) in cis-polyacetylene has a profound effect on the electron transport behavior of the molecules. The conductance of the four molecular wires decreases in the order of polyacetylene>oligo(cyclopentadiene)>oligo(furan)>oligo(pyrrole). In particular, the conductances of oligo(furan) and oligo(pyrrole) are much lower than those of polyacetylene and oligo(cyclopentadiene). The mechanism of this difference of electron transport properties of these four molecular systems is analyzed in terms of their geometric structures, electronic structures, transmission spectra, and spatial distribution of frontier orbitals. It is found that the energy levels of frontier molecular orbitals and the evolution of spatial distribution of frontier molecular orbitals with the applied bias are the essential reason for generating this difference of electron transport behaviors of the four molecular systems.  相似文献   

3.
The essence of the chemical mechanism for surface‐enhanced resonance Raman scattering (SERRS) is the charge transfer (CT) between the metal and the molecule at the resonant electronic transition, which results in the mode‐selective enhancement in the SERRS spectrum. The site‐orientated CT can directly interpret the mode‐selective chemical enhancement in SERRS. However, it is a great challenge to intutively visualize the orientation and site of the CT. In this paper, for the pyrazine–Au2 complex, a three‐dimensional (3D) cubic representation is built to provide direct visual evidence for chemical mechanisms of SERRS via CT from the Au2 cluster to pyrazine at the resonant electronic transition. The relationship between the mode‐selective enhancements in SERRS and the site‐orientated CT was clearly revealed. The intracluster excitation (analog of plasmon excitation in large naonoparticles) was also visualized by the 3D cubic presentation, which provided the direct evidence of local electromagnetic field enhancement of SERRS. To study the quantum size effect and the coupling effect of the nanoparticles, the photoexcitation mechanisms of the Au20–pyrazine complex and the Au20–pyrazine–Au20 junction were also investigated. The tunneling charge transfer from one Au20 cluster to another Au20 cluster outside the pyrazine in Au20–pyrazine–Au20 junction was also revealed visually. The calculated normalized extinction spectra of Au nanoparticles using the generalized Mie theory reveal that the resonance peak is red‐shifted due to the coupling between particles. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
The solid charge transfer (CT) complexes that have been formed from the reactions of donor benzidine (BZ) and the π‐acceptors such as 2,3‐dichloro‐5,6‐dicyano‐p‐benzoquinone (DDQ) and chloronil (CHL) have been studied and characterized experimentally and theoretically. The experimental work which includes the use of UV‐visible spectroscopy to identify the CT band of the CT‐complex. The composition of the complexes has been investigated successfully by using spectrophotometric titration and Job method of continuous variation to be 1:1. Furthermore, to calculate the formation constant and molar extinction coefficient, we have used the Benesi‐Hildebrand equation. Infrared and proton nuclear magnetic resonance spectral studies were used to characterize and confirm the formation of CT‐complex. The experimental studies were well supported by quantum chemical simulations by using density functional theory. The computational analysis of molecular geometry, Mulliken charges, and molecular electrostatic potential surfaces of reactants and complexes is very much helpful in assigning the CT route. The C═O bond length of DDQ and CHL increased upon complexation with BZ. We have also observed that the substantial amount of charge has been transferred from BZ to DDQ and CHL in the process of complexation. An excellent consistency has been achieved between experimental and theoretical results.  相似文献   

5.
An electron excited to an unoccupied part of adsorbate–substrate hybrid states in a chemisorbed molecule by a resonant core electron excitation or charge transfer (CT) shakeup may delocalize on time scale of core-hole decay so that the excited core-hole state relaxes partly or completely to a fully relaxed one. The Auger decay of the fully relaxed core-hole state via the relaxation of the excited one introduces an additional feature in the resonant Auger-electron spectroscopy (RAES) spectrum and the AES spectrum. However, the additional feature in the RAES spectrum is a normal AES spectrum by decay of the fully relaxed core-hole state, whereas the one in the AES spectrum is the AES spectrum by decay of the fully relaxed core-hole state broadened by the photoelectron spectroscopy (PES) CT shakeup satellite weighted by the branching ratio of the relaxation width. The discrepancies between the AES spectrum measured at high above the ionization threshold and the additional feature in the RAES spectrum consist of the symmetric-like part by the decay of the fully relaxed core-hole state via the relaxation of the CT shakeup state and the asymmetric part by the direct decay of the shakeup states. The asymmetric part increases with a decrease in the hybridization strength. This explains the variation with the hybridization strength in the discrepancies between the RAES spectra and the AES spectra of chemisorbed molecules such as CO/Ni, CO/Cu and CO/Ag. A comparison of the singles PES spectrum with the one measured in coincidence with the AES main line of a selected kinetic energy (KE) provides the delocalization rate of the excited electron in the CT shakeup state as a function of photoelectron KE. The coincidence measurement to obtain the partial singles PES spectrum is discussed.  相似文献   

6.
李智浩  曹亮  郭玉献 《物理学报》2017,66(22):224101-224101
利用基于同步辐射的近边X射线吸收精细结构谱(NEXAFS)和共振光电子谱(RPES)研究了苝四甲酸二酐分子(PTCDA)薄膜的电子结构.碳K边NEXAFS谱中能量小于290 eV的四个峰对应于PTCDA分子不同化学环境碳原子1s电子到未占据分子轨道的共振跃迁.RPES谱中观察到共振光电子发射和共振俄歇电子发射导致的共振峰结构,以及二次谐波激发的碳1s信号.根据电子动能对入射光能量的依赖性分别对三类峰结构进行了归属.同时,发现PTCDA分子轨道共振光电子峰的强度具有光子能量依赖性.这种能量选择性共振增强效应是由于PTCDA分子轨道空间分布差异导致的.共振俄歇峰主要源于高结合能(4.1 eV)分子轨道能级电子参与的退激发过程.明确RPES实验谱图中各个峰结构的起源有助于准确利用基于RPES的芯能级空穴时钟谱技术定量估算有机分子/电极异质界面处电子从分子未占据轨道到电极导带的超快转移时间.  相似文献   

7.
The asymptotic resonant charge exchange theory is developed for slow collisions of atoms and ions with valent p-electrons. Because of a small rotation angle of the molecular axis in the course of the p-electron transition, the resonant charge exchange cross section is not sensitive to the rotational energy of colliding particles, and the cross sections are nearly equal for cases “a”, “b”, and “d” of the Hund coupling, and also for cases “c” and “e” of the Hund coupling. The cross sections of the resonant charge exchange process are evaluated under various conditions and for various elements of the periodical table with p-electron shells of atoms and ions.  相似文献   

8.
The electronic structure of bases in DNA duplexes was investigated by resonant photoemission spectroscopy near the Fermi level, in order to specify charge migration mechanisms. We observed a kinetic energy shift of N-KLL Auger electrons and an intensity enhancement of valence electrons on the resonant photoemission spectra for both poly(dG).poly(dC) and poly(dA).poly(dT) DNAs. These directly show the localized unoccupied states of the bases. We conclude that the charge hopping model is pertinent for electric conduction in a DNA duplex, when electrons pass through the unoccupied states.  相似文献   

9.
The moment coupling of an interacting ion and an atom with a 3d-electron shell is analyzed for the ground state of identical atoms and ions where resonant charge exchange proceeds with transition of a 4s-electron. The interaction of the ion charge with the atom quadrupole moment is important for this system along with the exchange interactions and spin-orbit interactions inside an isolated atom and an ion. The quadrupole moment for 3d-atoms in the ground states is evaluated. The hierarchy of interactions in a molecular ion is analyzed depending on ion-atom distances and is compared with the standard Hund scheme. The resonant charge exchange proceeds effectively at separations corresponding to an intermediate case between cases “a” and “c” of the Hund coupling scheme.  相似文献   

10.
We present a theory for superconductivity and charge Kondo fluctuations, i.e., resonant quantum valence fluctuations by two charge units, for Tl-doped PbTe. We show that Tl is very special as it first supplies a certain amount of charge carriers to the PbTe-valence band and then puts itself into a self-tuned resonant state to yield a new, robust pairing mechanism for these carriers.  相似文献   

11.
We present recent studies of electronic excitations in nanofabricated AlGaAs/GaAs semiconductor quantum dots (QDs) by resonant inelastic light scattering. The resonant light scattering spectra are dominated by excitations from parity-allowed inter-shell transitions between Fock–Darwin levels. In QDs with very few electrons the resonant spectra are characterized by distinct charge and spin excitations that reveal the strong impact of both exchange and correlation effects. A sharp inter-shell spin excitation of the triplet spin QD state with four electrons is identified.  相似文献   

12.
《Current Applied Physics》2020,20(7):841-845
A typical donor/accepter (D/A) interface made of fluorinated hexaazatrinaphthylene (HATANA-F6) and metal phthalocyanine (MPc) molecules has been studied by photoelectron spectroscopy. Planar shape copper phthalocyanine (CuPc) and non-planar titanyl phthalocyanine (TiOPc) molecules show contrast behavior of D/A interface charge transfer (CT), though the electron affinity of HATANA-F6 is smaller than the ionization potential (IP) of both MPcs. While the CuPc/HATNA-F6 interface has no clue for the CT, the TiOPc/HATNA-F6 has an indication of interface CT-induced band bending. Not only the difference in IP but also molecular shape and interface geometry at D/A contact largely affect the characteristics of CT state formation.  相似文献   

13.
A novel one-color Xe+-N laser induced collisional charge transfer system is proposed, and preparation of the initial state of the system, i.e., Xe+ is experimentally implemented through resonance enhanced multi-photon ionization (REMPI) by ~440 nm dye laser. The REMPI of Xe is experimentally investigated through time-of-flight (TOF) mass spectrometry and the intensity dependence of Xe+ is obtained, aiming at the preparation of Xe+. The resonant ionization spectra of Xe at ~440 nm under several different conditions are measured, showing the impacts of mode purification and source pressure on the resonant ionization spectrum. The results indicate the feasibility of preparing the initial state of the Xe+-N system by ~440 nm multi-photon resonant ionization, which prepares for a further experiment of laser-induced collisional charge transfer.  相似文献   

14.
First direct measurements of nonambipolar magnetic fluctuation-induced charge transport in the interior of a high-temperature plasma are reported. Global resistive tearing modes drive the charge transport which is measured in the vicinity of the resonant surface for the dominant core resonant mode. Finite charge transport has two important consequences. First, it generates a potential well along with locally strong electric field and electric field shear at the resonant surface. Second, this electric field induces a spontaneous E x B driven zonal flow.  相似文献   

15.
Theoretical investigation of the polarization effect on a potential single‐molecule transistor has been studied with density functional theory. 4,4′‐(2‐Amino‐5‐nitro‐1,4‐phenylene)bis(ethyne‐2,1‐diyl) dibenzenethiol (AN‐OPE), containing a donor and an acceptor (D–A) crossed to its oligo(p‐phenylene‐ethynylene) (OPE) backbone, was used as a prototype for this study. Simulation results indicate that AN‐OPE has a higher on/off ratio on conductance than OPE because of the larger polarization along the D–A direction. This high on/off ratio was proved by the 20 times variation in molecular charge, 15 times variation in bond lengths, 49 times variation in polarizability, 9 times variation in the rotation angles, and 13 times variation in the highest occupied molecular orbital–lowest unoccupied molecular orbital gaps under the same gate using B3LYP/6‐31G (d, p). And results imply that conjugated molecules with a cross D–A structure could be a good direction for constructing a better single‐molecule field‐effect transistor. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
First-principles density functional theory calculations in the generalized gradient approximation, with plane wave basis set and pseudopotentials, have been used to investigate the desorption pathways of molecular oxygen species adsorbed on the SnO2 (110) surface. Energetics of the thermodynamically favored precursors is studied in dependence on the surface charge provided either by surface defects or by donor type impurities from the near-surface region. The resonant desorption modes of O2 molecules are examined in the framework of ab initio atomic thermodynamics and relationship of these results to experimental observations is discussed.  相似文献   

17.
We manipulate a single electron in a fully tunable double quantum dot using microwave excitation. Under resonant conditions, microwaves drive transitions between the (1,0) and (0,1) charge states of the double dot. Local quantum point contact charge detectors enable a direct measurement of the photon-induced change in occupancy of the charge states. From charge sensing measurements, we find T1 approximately 16 ns and a lower bound estimate for T*(2) of 400 ps for the charge two-level system.  相似文献   

18.
The states of a charged particle with a finite free path are determined in the field of a resonant electromagnetic wave. The exact resonance conditions, the modulation and beam instability mechanisms, the charge and current densities (Ohm's law) are obtained for the collisionless beam of resonance particles. Quantum theory of radiation is developed for the resonant adiabatic interaction between a particle and a wave taking into account the interaction with a constant magnetic field induced at the grating surface by the charge and nonresonant waves. The radiation power, the spectrum, and the range of generated frequencies are determined. The results obtained can be used in the plasma and solid-state theories and in electronics.  相似文献   

19.
The Landau-Herring method is used to derive an analytic expression for the one-electron exchange interaction of a polar molecule with its positively charged ion, induced by a σ-electron. Analogously to the classical Van der Pole method, the exchange interaction potential is averaged over the rotational states of colliding particles. The resonant charge-transfer cross section is calculated, and the effect of the dipole moments of the core on the cross section is analyzed. It is shown that allowance for the dependence of the exchange potential on the orientation of the dipole moments relative to the molecular axis may change the dependence of the cross section on the velocity of colliding particles, which is typical of the resonant charge exchange, from the resonance to the quasi-resonance dependence.  相似文献   

20.
We study tunneling through resonant tunneling diodes (RTD) with very long emitter drift regions (up to 2 microm). In such diodes, charge accumulation occurs near the double barrier on the emitter side, in a self-induced potential pocket. This leads to a substantial enhancement of the wave function overlap between states of the pocket and the RTD, and, consequently, to increased off-resonant current mediated by various scattering processes. For RTD with the longest drift region (2 microm), an additional strong current peak is observed between the first and the second resonant peaks. We attribute this pronounced feature to the intersubband transitions mediated by resonant emission of intersubband plasmons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号