首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The decay pathway competition between monomer and dimer evaporation of photoexcited cluster ions Au + n, n = 2-27, has been investigated by photodissociation of size-selected gold clusters stored in a Penning trap. For n > 6 the two decay pathways are distinguished by their experimental signature in time-resolved measurements of the dissociation. For the smaller clusters, simple fragment spectra were used. As in the case of the other copper-group elements, even-numbered gold cluster ions decay exclusively by monomer evaporation, irrespective of their size. For small odd-size gold clusters, dimer evaporation is a competitive alternative, and the smaller the odd-sized clusters, the more likely they decay by dimer evaporation. In this respect, Au + 9 shows an anomalous behavior, as it is less likely to evaporate dimers than its two odd-numbered neighbors, Au + 7 and Au + 11. This nonamer anomaly is typical for copper-group cluster ions M + 9 (M = Cu, Ag, Au) and a similar behavior is found in the anionic heptamers M - 7. It is discussed in terms of the well-known electronic shell closing at n e = 8 atomic valence electrons. Received 2 November 2000  相似文献   

2.
Singly charged silver-cluster anions are produced in a laser vaporization source and transferred into a Penning trap. After size selection the clusters are subjected to an electron bath in the trap, which results in the attachment of further electrons. The relative abundance of dianions or trianions as a function of the clusters' size is analyzed by time-of-flight mass spectrometry. Silver-cluster dianions are observed for sizes n≥ 24 and trianions for n > 100. In addition, a detailed study of the cluster sizes 24 ?n? 60 shows a pronounced resistance to electron attachment for singly charged anions Agn - with a closed electronic shell, in particular Ag29 -, Ag33 -, and Ag39 -. Both the threshold size for the observation of dianionic silver clusters and the shell effects in the production yield correlate favorably with previous theoretical investigations of the respective electron affinities. Received 24 November 2000  相似文献   

3.
Cluster anions of a sodium atom with acrylonitrile molecules, (n = 0–6), have been studied by negative-ion photoelectron spectroscopy. In addition, theoretical calculations by using density functional theory have been performed to obtain optimized structures and vertical detachment energies. For Na(AN), the spectrum can be explained by excitation of two different isomers of the anion. For , a broad band is found in the photoelectron spectrum, whose profile is almost identical with those of previously reported photoelectron spectra of and a negative ion of chemically synthesized 1,3,5-cyclohexanetricarbonitrile (CHTCN) molecule. From this resemblance of band profiles, we conclude that oligomerization of (AN)3 takes place in and the CHTCN is formed as the intracluster reaction product.  相似文献   

4.
We have studied the atomic structure and the electronic properties of Ban clusters by the ab initio molecular dynamics method. We find that a structural transition to the bulk-like structure begins at Ba9 cluster, and the structures of the clusters are transferred to be icosahedral-like around n = 13. The relatively high stability for Ba4, Ba10 and Ba13 clusters are observed. Received 1st December 2000  相似文献   

5.
Tight-binding model is developed to study the structural and electronic properties of silver clusters. The ground state structures of Ag clusters up to 21 atoms are optimized by molecular dynamics-based genetic algorithm. The results on small Agn clusters (n = 3-9) are comparable to ab initio calculations. The size dependence of electronic properties such as density of states, s-d band separation, HOMO-LUMO gap, and ionization potentials are discussed. Magic number behavior at Ag2, Ag8, Ag14, Ag18, Ag20 is obtained, in agreement with the prediction of electronic ellipsoid shell model. We suggest that both the electronic and geometrical effect play significant role in the coinage metal clusters. Received 7 August 2000  相似文献   

6.
The interaction of large ammonia and water clusters in the size range from <n> = 10 to 3 400 with electrons is investigated in a reflectron time-of-flight mass spectrometer. The clusters are generated in adiabatic expansions through conical nozzles and are nearly fragmentation free detected by single photon ionization after they have been doped by one sodium atom. For ammonia also the (1+1) resonance enhanced two photon ionization through the state with v = 6 operates similarly. In this way reliable size distributions of the neutral clusters are obtained which are analyzed in terms of a modified scaling law of the Hagena type [Surf. Sci. 106, 101 (1981)]. In contrast, using electron impact ionization, the clusters are strongly fragmented when varying the electron energy between 150 and 1 500 eV. The number of evaporated molecules depends on the cluster size and the energy dependence follows that of the stopping power of the solid material. Therefore we attribute the operating mechanism to that which is also responsible for the electronic sputtering of solid matter. The yields, however, are orders of magnitude larger for clusters than for the solid. This result is a consequence of the finite dimensions of the clusters which cannot accommodate the released energy. Received 21 November 2001  相似文献   

7.
Nam(H2O)n Clusters ( n = 1...200, m = 1...50) are formed in a recently build pick-up arrangement. Preformed water clusters traverse a sodium oven, where sodium atoms are picked up. At low sodium vapour pressure ( < 1×10-4 mbar) pure Na(H2O)n clusters are observed in the mass spectra. At high sodium vapour pressure ( > 1×10-3 mbar) the water cluster pick up more than 50 Na atoms and reaction products Na(NaOH)n ( n = 2, 4...50) dominate the mass spectra. The even number of NaOH units in the products indicate that also in a finite cluster the reaction occurs in pairs as in the macroscopic reaction. Received 4 December 2000  相似文献   

8.
This paper deals with a new type of SiC bonding where silicon atom seems to bridge C60 molecules. We have studied films obtained by deposition of (C60)nSim clusters prepared in a laser vaporization source. Prior deposition, free ionized clusters were studied in a time-of-flight mass spectrometer. Mixed clusters (C60)nSim were clearly observed. Abundance and photofragmentation mass spectroscopies revealed the relatively high stability of the (C60)nSi n + , (C60)nSi n - 1 + and (C60)nSi n - 2 + species. This observation is in favor of the arrangement of these complexes as polymers where the C60 cages may be bridged by a silicon atom. Free neutral clusters are then deposited onto substrate making up a nanogranular thin film ( 100 nm). The film is probed by Auger and X-ray photoemission spectroscopies, but above all by surface enhanced Raman scattering. The results suggest an unusual chemical bonding between silicon and carbon and the environment of the silicon atom is expected to be totally different from the sp3 lattice: ten or twelve carbon neighbors might surround silicon atom. The bonding is discussed to the light of the so-called fullerene polymerization as observed for pure fullerite upon laser irradiation. This opens a new route for bridging C60 molecules together with an appreciable energy bonding, since the usual van der Waals bonding in fullerite could be replaced by an ionocovalent bond. Such an assumption must be checked in the future by XAS and EXAFS experiments. Received 15 November 2000  相似文献   

9.
The cyclotron frequencies of singly charged carbon clusters Cn + (n ≥ 2) were measured with the Penning-trap mass spectrometer ISOLTRAP at ISOLDE/CERN. The present limit of mass accuracy δm/m = 1.2 . 10-8 and the extent of the mass-dependent systematic shift (δm/m)sys = 1.7(0.6) . 10-10/u . (m - m ref) of the setup were investigated for the first time. In addition, absolute mass measurements by use of pure clusters of the most abundant carbon isotope 12C are now possible at ISOLTRAP. Received: 21 March 2002 / Accepted: 16 May 2002 / Published online: 31 October 2002 RID="a" ID="a"Present address: CERN, CH-1211 Geneva 23, Switzerland; e-mail: klaus.blaum@cern.ch  相似文献   

10.
The cross-sections for collisional charge transfer between singly charged free clusters M n + (M = Li, Na; n=1...50) and atomic targets A (cesium, potassium) have been measured as a function of collisional relative velocity in laboratory energy range 1–10 keV. For each cluster size, the experimental values of the charge transfer cross-section are fitted with an universal parametric curve with two independent parameters and vm, the maximum cross-section and the corresponding velocity. For small size clusters (), the characteristic parameters show strong variations with the number of atoms in the cluster. Abrupt dips observed for n=10 and n=22 are attributed to electronic properties. Charge transfer patterns observed for various collisional systems present similarities, which appear more sensitive to cluster quantum size effects than to collision energy defects. In their whole, the and vm parameters show differences in both their size evolution and their absolute values discussed in term of projectile and target electronic structures. Received 13 April 2000 and Received in final form 29 June 2000  相似文献   

11.
Optical properties of mixed clusters (AuxAg 1 - x ) n and (NixAg 1 - x ) n , produced by laser vaporization and embedded in an alumina matrix, are reported. The size effects are investigated for different concentrations (x = 0.25, 0.5 and 0.75) in the diameter range 2-4 nm. For alloyed clusters (AuxAg 1 - x ) n of a given size an almost linear evolution of the surface plasmon frequency ω s with the concentration is observed (between those of pure gold and pure silver clusters). Moreover the blue-shift and the damping of the resonance with decreasing size is all the more important as the gold concentration in the particles increases. Such results are in agreement with theoretical calculations carried out in the frame of the time-dependent local-density-approximation (TDLDA) including an inner skin of ineffective screening and the porosity of the matrix. The optical response of (NixAg 1 - x ) n clusters exhibits a surface plasmon resonance in the same spectral range as the one observed for pure silver clusters, but considerably damped and broadened. For a given mean cluster size 3.0 nm, a blue-shift of the resonance is observed when increasing the nickel concentration (between x = 0.25 and x = 0.75). The results are in good qualitative agreement with classical predictions in the dipolar approximation, assuming a core-shell geometry. Received 21 November 2000  相似文献   

12.
Metastable fragmentation of silver bromide clusters   总被引:2,自引:0,他引:2  
The abundance spectra and the fragmentation channels of silver bromide clusters have been measured and analyzed. The most abundant species are AgnBrn - 1 + and AgnBrn + 1 - and Ag14Br13 + is a magic number, revealing their ionic nature. However, some features depart from what is generally observed for alkali-halide ionic clusters. From a certain size, AgnBrn - 1 + is no more the main series, and AgnBr n - 2, 3 + series become almost as important. The fast fragmentation induced by a UV laser makes the cations lose more bromine than silver ions and lead to more silver-rich clusters. Negative ions mass spectra contain also species with more silver atoms than required by stoichiometry. We have investigated the metastable fragmentation of the cations using a new experimental method. The large majority of the cations release mainly a neutral Ag3Br3 cluster. These decay channels are in full agreement with our recent ab initio DFT calculations, which show that Ag+-Ag+ repulsion is reduced due to a globally attractive interaction of their d orbitals. This effect leads to a particularly stable trimer (AgBr)3 and to quasi-planar cyclic structures of (AgBr)n clusters up to n = 6. We have shown that these two features may be extended to other silver halides, to silver hydroxides (AgOH)n, and to cuprous halide compounds. Received 9 November 2000 and Received in final form 25 January 2001  相似文献   

13.
Systematic study of small BN clusters   总被引:2,自引:0,他引:2  
We performed a systematic investigation of the small BxNy (x + y? 6) clusters using the ab initio Hartree-Fock scheme plus second-order perturbation theory. The nature of the potential energy surface extrema are analyzed through analytical total energy second derivatives. Ionization potentials, binding energies and the stability against some possible reaction mechanisms are calculated. Based on these results we propose that the growing process for these clusters is mainly due to the successive incorporation of BN molecules. A discussion of some mass spectrometry experimental results is also presented. Received 2 October 2000  相似文献   

14.
We have studied experimentally the collisional charge transfer between a neutral atom and a multicharged metal-atom cluster. The charge transfer cross section measured for Na 31 + + + Cs is in the range of 400 ?2. The time-of-flight mass analysis of the singly charged collision products demonstrates that an energy of about 0.5 eV is deposited in the cluster fragment during the charge transfer collision. This effect can be interpreted as a charge transfer to an excited state of the metal cluster. The measured cross section for Na 31 + + + Cs is larger than the one for Na 31 + + Cs collisions. This difference between these two systems is due to the existence, for the first one, of a Coulombic repulsion term in the collision output channel. Received 24 October 2000  相似文献   

15.
The effect of melting transition on the ionization potential has been studied for sodium clusters with 40, 55, 142, and 147 atoms, using ab initio and classical molecular dynamics. Classical and ab initio simulations were performed to determine the ionization potential of Na142 and Na147 for solid, partly melted, and liquid structures. The results reveal no correlation between the vertical ionization potential and the degree of surface disorder, melting, or the total energy of the cluster obtained with the ab initio method. However, in the case of 40 and 55 atom clusters, the ionization potential seems to decrease when the cluster melts. Received 1st November 2002 Published online 24 April 2003 RID="a" ID="a"e-mail: ar@phys.jyu.fi  相似文献   

16.
We report results of the atomic and electronic structures of Al7C cluster using ab initio molecular dynamics with ultrasoft pseudopotentials and generalized gradient approximation. The lowest energy structure is found to be the one in which carbon atom occupies an interstitial position in Al7 cluster. The electronic structure shows that the recent observation [Chem. Phys. Lett. 316, 31 (2000)] of magic behavior of Al7C- cluster is due to a large highest occupied and lowest unoccupied molecular orbital (HOMO-LUMO) gap which makes Al7C- chemically inert. These results have further led us to the finding of a new neutral magic cluster Al7N which has the same number of valence electrons as in Al7C- and a large HOMO-LUMO gap of 1.99 eV. Further, calculations have been carried out on (Al7N)2 to study interaction between magic clusters. Received 28 July 2001  相似文献   

17.
The isomerization and evaporation processes in the neutral homogeneous (CH3CN)n molecular clusters (n = 2-7) have been investigated using classical molecular dynamics simulations. The evaporation rate constants and the kinetic energy release in the dissociation have been analysed as a function of the cluster size and as a function of the internal energy in the parent cluster. The competition between monomer and dimer ejections has been also carefully studied. All the dynamical properties in these dissociative processes have been discussed in relation to the static properties of the clusters involved in the dissociation and also in relation to the solid-liquid like transition which appears in these homogeneous molecular clusters. Received 19 November 2002 / Received in final form 5 February 2003 Published online 29 April 2003 RID="a" ID="a"e-mail: pascal.parneix@ppm.u-psud.fr RID="b" ID="b"Laboratoire associé à l'université Paris-Sud.  相似文献   

18.
Mass-resolved resonant two photon ionisation (R2PI) and infrared ion dip spectra have been recorded for 4-phenylimidazole (4PI) and its singly and multiply hydrated clusters 4PI(H2O)n = 0 - 4, under supersonic expansion conditions. In the case of 4PI(H2O)0,1, it has also been possible to record infrared spectra in both the ground (S0) and excited (S1) states. Combining the experimental data with the results of ab initio calculations has led to the structural assignment of each cluster. In each case, the water molecules bind primarily to the NH site of the imidazole ring. Clusters with n≥ 2 incorporate linear water chains, in which the proton donating terminus bridges either to the π-electron system (n = 2) or to the >N: atom site (n = 3, 4) on the imidazole ring. Despite the creation of a “water wire”, connecting the donor and acceptor sites of imidazole, there is no evidence of proton transfer in either the ground or excited state. Received 20 December 2001 Published online 13 September 2002  相似文献   

19.
The H atom transfer reaction in electronically excited indole(NH 3 ) n clusters is studied in pump-probe experiments with femtosecond laser pulses. By applying different probe photon energies we are able to detect the dissociation products (NH 3 ) n - 1 NH 4 for n = 1-6. Furthermore we show that the analysis of the corresponding ion signals is not distorted by contributions from larger cluster ions due to evaporation of NH 3 molecules. The formation times of the products are ca. 140ps for n = 2-4 and about 80ps for n = 5, 6. Received 30 April 2002 / Received in final form 29 May 2002 Published online 13 September 2002  相似文献   

20.
Infrared (IR) photodissociation spectra of the aniline+-Arn cations, An + - Ar n (n = 1, 2), are analyzed in the vicinity of the N-H stretch fundamentals. The complexes are produced in an electron impact (EI) ion source which produces predominantly the most stable cluster isomers. Two isomers of An+-Ar are identified by their characteristic N-H stretch frequencies: the planar proton-bound global minimum, in which the Ar ligand forms a nearly linear H-bond to the amino group, and the less stable π-bound local minimum, in which the Ar atom is attached to the π-electron system of the aromatic ring. This result is the first unambiguous detection of the most stable H-bound An+-Ar dimer. All previous spectroscopic studies of An+-Ar employed resonance enhanced multiphoton ionization (REMPI) of neutral An-Ar and identified only the less stable π-bound cation due to restrictions arising from the Franck-Condon principle. The EI-IR spectrum of An+-Ar2 shows that the most stable structure of this trimer features two equivalent H-bonds (C2v symmetry). The interpretation of the experimental data is supported by quantum chemical calculations. The ab initio potential of An+-Ar calculated at the UMP2/6-311G(2df, 2pd) level features H-bound global minima ( D e = 513 cm-1) and π-bound local minima ( D e = 454 cm-1), with a barrier of V b ≈ 140 cm-1 for isomerization from the π-bound toward the H-bound minimum. Received 4 February 2002 Published online 13 September 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号