首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Multiphoton ionization, first observed by N.B. Delone in 1965, has been a subject of intense studies ever since. In this paper we consider multiphoton ionization of molecules in the limit of subopticalcycle pulse duration. Moreover, we study the regime where the molecules are first prepared in a coherent vibrational superposition state, and then are subjected to sub-cycle laser pulses synchronized with respect to the phase of the coherent molecular motion. The present approach is based on the Keldysh formalism, which assumes that the final free electron’s state is much more sensitive to the pulse than the bound initial wavefunction [1]. We find that the ionization rate depends not only on the sub-cycle shape of the laser pulses, but also on the time delay between the arrival of pulses and molecular motion.  相似文献   

2.
用Laplace变换方法求出了Bloch方程在各种不同物理条件下的解析解,这些解析解物理图象清楚,便于分析,克服了数值解中的困难.解析解和相应的结论已用于水峰抑制和特形脉冲的设计.对于水峰抑制,本文指出抑制效果是有极限的,并给出了抑制效果的极限以及最佳抑制时间的近似计算公式.在特形脉冲的模拟过程中,我们发现只有同时考虑全部四类解析解,才能得到正确的模拟结果,另外,模拟还表明,要在保持激励频谱形状不变的条件下,得到不同倾倒角的脉冲必须改变激励脉冲的形状,相应实验的结果与我们给出的上述结论完全吻合。  相似文献   

3.
The influence of temporal pulse shaping on plasma plume generated by ultrafast laser irradiation of aluminum is investigated. Time resolved plasma emission spectroscopy is coupled with a temporal shaping procedure in a closed loop. The ionic emission is enhanced relative to the neutral one via an adaptive optimization strategy. The plasma emission efficiency in case of optimized and ultrashort temporal shapes of the laser pulses are compared, evidencing an enhancement of the ionization degree of the plasma plume. Simplified temporal shapes of the femtosecond laser pulses are extracted from the optimized shape and their corresponding effect on laser induced plasma emission is discussed.  相似文献   

4.
An investigation of the probability of hydrogen atom ionization by ultra‐short electromagnetic pulses is carried out in the frame of perturbation theory We consider the case when the electric field strength amplitude E0 in a pulse by two orders lower than characteristic atomic field strength Ea (Ea ? 5.1 · 109 V/cm). A detailed investigation of the dependence of the probabilities on the pulse duration was performed for Gaussian pulse shapes. In the case where the carrier frequency of the Gaussian pulse is larger than the atomic ionization potential, the probability goes to the standard limit of perturbation per unit time. At the same pulse durations, the probabilities for carrier frequencies less than the ionization potential go to zero. The frequency dependence of the ionization probability becomes equal to the standard threshold dependence with increasing pulse duration time. A comparison between the ionization effects caused by wavelet pulses without carrier frequency and Gaussian pulses with carrier frequency shows that the same ionization probability values are achieved when the pulse carrier frequency is detuned by about 20% from the ionization threshold. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
How fast can a laser pulse ionize an atom? We address this question by considering pulses that carry a fixed time-integrated energy per-area, and finding those that achieve the double requirement of maximizing the ionization that they induce, while having the shortest duration. We formulate this double-objective quantum optimal control problem by making use of the Pareto approach to multi-objective optimization, and the differential evolution genetic algorithm. The goal is to find out how a precise time-profiling of ultra-fast, large-bandwidth pulses may speed up the ionization process. We work on a simple one-dimensional model of hydrogen-like atoms (the Pöschl-Teller potential) that allows to tune the number of bound states that play a role in the ionization dynamics. We show how the detailed shape of the pulse accelerates the ionization, and how the presence or absence of bound states influences the velocity of the process.  相似文献   

6.
Using a classical ensemble method, we have investigated sequential double ionization (SDI) of Ar atoms driven by elliptical laser pulses. The results show that the ion momentum distribution of the Ar atoms depends strongly on the pulse duration. As the pulse duration increases, the ion momentum distribution changes from two bands to four bands and then to six bands and finally to an eight-band structure. Back analysis of double ionization trajectories shows that the variation of the band structure originates from pulse duration dependent multiple ionization bursts of the second electron. Our calculations indicate that the subcycle electron emission in the SDI could be more easily accessed by using elliptical laser pulses with a longer wavelength. Moreover, we show that there is good correspondence between the scaled radial momentum and the ionization time.  相似文献   

7.
In this article, the effect of ionization on the energy spectrum of electrons within the interaction of a laser pulse with hydrogen atoms is investigated using particle-in-cell simulation codes. The results show that the behaviour of electrons' energy distribution function in the field-ionized plasma, which occurred due to the field ionization, compared with that in the pre-plasma strongly depends on the pulse shape. For short rise-time pulses (here 30 fs), due to the rapid enhancement of laser electric field, ionization occurs quickly, and as a result, there is not much difference in the electron energy in both the media. However, for pulses with rise time of 40 fs, in the pre-plasma state, the electron population reaches higher energies compared with the field-ionized plasma state. The main reason for this difference is the nonlinear wave breaking that happens earlier due to density inhomogeneity in the field-ionized plasma. On the other hand, at longer rise-time pulses (here 60 and 70 fs), electrons achieve higher energies in the field-ionized plasma than those in the case of pre-plasma. In this case, because of density fluctuations in the field-ionized plasma, the Raman backscattered radiations are seeded by a strong initial noise at the earlier times and the Mendonca condition for chaos threshold is met sooner. Therefore, the electrons gain more energy through the stochastic mechanism that is in agreement with chaotic nature of the motion.  相似文献   

8.
利用等离子体非线性系数实现超强脉冲的压缩   总被引:2,自引:0,他引:2  
超短脉冲压缩技术在强场物理研究中有非常重要的作用,但由于强场电离现象在惰性气体自相位调制脉冲压缩技术中限制了脉冲的能量。Tempea等人提出可以采用等离子体非线性系数对脉冲进行压缩,本文在考虑毛细管内表面电离的情况下,讨论能量为10mJ左右,脉宽为50fs的脉冲的压缩问题,发现可以将脉冲压缩至5fs左右。计算表明频谱展宽可以在气体密度很低的情况下进行,这样半可以减小电子对脉冲传输的影响。同时,由于毛细管内表面也处于电及状态,从而使脉冲能量不会受到电离阈值的.限制。  相似文献   

9.
The pulse shape and phase of isolated attosecond extreme ultraviolet (XUV) pulses with a duration of 860 asec have been determined simultaneously by using frequency-resolved optical gating based on two-photon above-threshold ionization with 28-eV photons in He. From the detailed characterization, we succeeded in shaping isolated XUV pulses on an attosecond time scale by precise dispersion control with Ar gas density or by changing the driving pulse width. These results offer a novel way to excite and observe an electron motion in atoms and molecules.  相似文献   

10.
Oguri K  Nishikawa T  Ozaki T  Nakano H 《Optics letters》2004,29(11):1279-1281
We propose a sampling technique for measuring the shape of ultrashort soft-x-ray pulses. The technique uses the transient state of Kr+ ions that is produced by the femtosecond sequential evolution of Kr ions during optical-field-induced ionization as an ultrafast x-ray-absorption sampling gate. We demonstrate the technique by measuring the pulse shape of the 51st harmonic (15.6 nm) generated by a 100-fs titanium:sapphire laser pulse. The measured pulse duration is 220 fs. Our experimental result confirms that the sequential evolution of Kr+ ions from neutral Kr to Kr2+ is the dominant contribution to the ionization process from the aspect of time-domain measurement.  相似文献   

11.
于伟威  郭静  刘学深 《中国物理 B》2010,19(2):23201-023201
This paper uses the classical ensemble method to study the double ionization of a 2-dimensional (2D) model helium atom interacting with an elliptically polarized laser pulse. The classical ensemble calculation demonstrates that the ratio of double to single ionization decreases with the increasing ellipticity of the driving field. The classical scenario shows that there are hardly any e--e recollisions with the circularly polarized laser pulse. The double ionization probability is studied for linearly and circularly polarized laser pulses. The classical numerical results are consistent with the semiclassical rescattering mechanism and in agreement with the experimental results and the quantum calculations qualitatively.  相似文献   

12.
杜海伟  陈民  张凯云  盛政明  十张杰 《物理学报》2012,61(17):174205-174205
本文通过理论和数值模拟,研究少周期激光脉冲电离气体原子产生的离化电流 以及相应的THz波辐射.研究表明,少周期激光脉冲离化气体后能产生较大的离化电流, 因而可以产生较强的THz辐射.不同的少周期激光脉冲相位导致电离出的 电子初始速度和电离起始时刻不同,从而产生的离化电流有所不同, 辐射的THz波随激光脉冲的相位成周期性变化.该理论得到一维PIC数值模拟的验证. 对于给定的激光脉冲相位,离化电流和THz辐射振幅并没有随入射激光振幅的增加而单调增加, 而是存在一些极值点.与均匀分布气体相比,当气体分布具有一定梯度时, 辐射表现相似的规律,但频谱会发生一定的变化.  相似文献   

13.
卞华栋  戴晔  叶俊毅  宋娟  阎晓娜  马国宏 《物理学报》2014,63(7):74209-074209
本文通过数值模拟(3+1)维扩展的广义非线性薛定谔方程,研究了紧聚焦飞秒激光脉冲在诱导石英玻璃的非线性电离过程中电子动量弛豫时间对于该电离过程的影响.计算结果证明电子动量弛豫时间会直接影响入射脉冲在焦点区域所形成的峰值场强、自由电子态密度和能流等参量的分布态势,因此在与实验结果相比较后发现适合于相互作用过程的电子动量弛豫时间的理论值约为1.27 fs.进一步的研究表明,电子动量弛豫时间与逆韧致吸收效应、雪崩电离的概率、等离子体密度、等离子体的自散焦效果以及间接引起的焦平面位置的移动都有着密切的联系.当前的研究结果表明电子动量弛豫时间在飞秒激光脉冲与物质相互作用的过程中发挥着重要作用.  相似文献   

14.
谭放  彭良友  龚旗煌 《中国物理 B》2009,18(11):4807-4814
We investigate the ionization dynamics of atoms by chirped attosecond pulses using the strong field approximation method. The pulse parameters are carefully chosen in the regime where the strong field approximation method is valid. We analyse the effects of the chirp of attosecond pulses on the energy distributions and the corresponding left-right asymmetry of the ionized electrons. For a single chirped attosecond pulse, the ionized electrons can be redistributed and the left-right asymmetry shows oscillations because of the introduction of the chirp. For time-delayed double attosecond pulses at different intensities with the weaker one chirped, exchanging the order of the two pulses shows a relative shift of the energy spectra, which can be explained by the different effective time delays of different frequency components because of the chirp.  相似文献   

15.
Laser material processing of dielectrics with temporally asymmetric femtosecond laser pulses of identical fluence, spectrum, and statistical pulse duration is investigated experimentally. To that end single shot structures at the surface of fused silica as a function of fluence and pulse shape are analyzed with the help of scanning electron microscopy. Structures for the bandwidth limited pulses show the known expansion in structure size with increasing laser fluence approaching the diffraction limit, which is 1.4 μm for the 0.5NA microscope objective used. In contrast, structures from the asymmetric pulses are remarkably stable with respect to variations in laser fluence and stay below 300 nm despite doubling the fluence. Different thresholds for surface material modification with respect to an asymmetric pulse and its time reversed counterpart are attributed to control of different ionization processes.  相似文献   

16.
Specific features of ionization of single atoms by laser fields of a near-atomic strength are investigated. Calculations are performed for silver atoms interacting with femtosecond laser pulses with wavelengths λ = 800 nm (Ti:Sapphire) and λ = 1.064 μm (Nd:YAG). The dependences of the probability of ionization and of the form of the photoelectron energy spectra on the field of laser pulses for various values of their duration are considered. It is shown that the behavior of the probability of ionization in the range of subatomic laser pulse fields is in good agreement with the Keldysh formula. However, when the field strength attains values close to the atomic field strength, the discrepancies in these dependences manifested in a decrease in the ionization rate (ionization stabilization effect) or in its increase (accelerated ionization) are observed. These discrepancies are associated with the dependence of the population dynamics of excited discrete energy levels of the atom on the laser pulse field amplitude.  相似文献   

17.
Laser evaporative heating of the solid surface is considered and the effect of temporal variation of laser pulse shape on temperature rise is examined. In the analysis, time exponentially varying and step input pulses are employed and closed-form solutions for temperature rise are presented. Comparison of temporal variation of surface temperature is carried out for various laser pulse parameters of exponential and step input pulses. The pulse energies are kept the same for all pulses used in the comparison. It is found that temperature distributions corresponding to pulses used in the simulations are different and temperature decay in cooling cycle (after ending of the laser pulse) is clearly evident for step input pulses; however, this is not clearly identified for exponential pulses.  相似文献   

18.
In this paper, the effect of the laser pulse shape on the generation and evolution of the wakefield during the interaction of the intense laser pulse with the gas have been studied utilizing the parallel relativistic PIC simulation code. In order to reach this aim, three pulses with length 300 fs and different rise-times 30, 45, and 60 are typically selected. Our results show that, the amplitude of the laser wakefield produced in the gas in comparison with the plasma strongly depends on the laser pulse shape. The simulation results indicate that for the high-slope laser pulse time (here 30 fs), ionization and thus density fluctuations have no significant effect on the wakefield generation because of rapid increase of the laser electric field. While by increasing the laser pulse rise-time to 45 fs, the rapid wave breaking due to the change in the medium refractive index during the gas ionization, prevents from the wakefield amplitude growth, so that the wakefield with larger amplitude is emerged in the plasma. For a slow-sloping pulse (here 60 fs), the ratio of the wakefield generation in the gas to the plasma is altered for the different gas densities and laser intensities. Moreover, it is represented that the longer the laser pulse rise-time, the sooner difference between the wakefield produced in the gas and plasma is observed. In fact, the larger the rise-time, the greater the density fluctuations and, consequently, the larger the initial noise is generated to seed the Raman instability.  相似文献   

19.
The ionization of a model two-electron atom in the field of a strong ultrashort laser pulse is studied by numerical integration of the nonstationary Schrödinger equation describing the dynamics of a quantum system in the field of an electromagnetic wave. Pecularities of the two-electron ionization are analyzed for pulses whose duration amounts to one to two periods of oscillation of the electric field of the wave at different frequencies of the incident radiation. For extremely short pulses, the double ionization is found to be suppressed. This effect is caused by the finiteness of the interelectron energy exchange time during the laser action. Peculiarities of the generation of high-order harmonics and single XUV attosecond pulses upon ionization of atoms by laser pulses, whose duration is within one to two optical cycles, are investigated.  相似文献   

20.
A classical microcanonical 1+1-dimensional model is used to investigate the ion momentum distributions in nonsequential double ionization with linearly polarized few-cycle pulses. We find that the ion momentum distribution has a strong dependence on the carrier-envelope phase of the few-cycle pulse, which is consistent with the experimental results qualitatively. Back analysis shows that the ionization probability of the first electron at different phases and its returning kinetic energy play the main role on the ion momentum distributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号