首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This report describes a new method for measuring the temperature of the gas behind the reflected shock wave in shock tube, corresponding to the reservoir temperature of a shock tunnel, based on the chemical reaction of small amount of CF4 premixed in the test gas. The final product C2F4 is used as the temperature indicator, which is sampled and detected by a gas chromatography in the experiment. The detected concentration of C2F4 is correlated to the temperature of the reflected shock wave with the initial pressureP 1 and test time τ as parameters in the temperature range 3 300 K<T<5 600 K, pressure range 5 kPa<P 1<12 kPa and τ≅0.4 ms. The project supported by the China Aerodynamics Project for Basic Researches (J13.5.2 ZK04)  相似文献   

2.
Forced convection flow in a microchannel with constant wall temperature is studied, including viscous dissipation effect. The slip-flow regime is considered by incorporating both the velocity-slip and the temperature-jump conditions at the surface. The energy equation is solved for the developing temperature field using finite integral transform. To increase βv Kn is to increase the slip velocity at the wall surface, and hence to decrease the friction factor. Effects of the parameters βv Kn, β, and Br on the heat transfer results are illustrated and discussed in detail. For a fixed Br, the Nusselt number may be either higher or lower than those of the continuum regime, depending on the competition between the effects of βv Kn and β. At a given βv Kn the variation of local Nusselt number becomes more even when β becomes larger, accompanied by a shorter thermal entrance length. The fully developed Nusselt number decreases with increasing β irrelevant to βv Kn. The increase in Nusselt number due to viscous heating is found to be more pronounced at small βv Kn.  相似文献   

3.
Higher order entropies are kinetic entropy estimators for fluid models. These quantities are quadratic in the velocity and temperature derivatives and have temperature dependent coefficients. We investigate governing equations for higher order entropies and related a priori estimates in the natural situation where viscosity and thermal conductivity depend on temperature. We establish positivity of higher order derivative source terms in these governing equations provided that is small enough. The temperature factors renormalizing temperature and velocity derivatives then yield majorization of lower order convective terms only when the temperature dependence of transport coefficients is taken into account according to the kinetic theory. In this situation, we obtain entropic principles for higher order entropies of arbitrary order. As an application, we investigate a priori estimates and global existence of solutions when the initial values log(T 0/T ) and are small enough in appropriate spaces.  相似文献   

4.
 This paper reports on progress in the study of the water entry phenomenon. First, an experiment conducted measuring the velocity of the projectile after water entry. An empirical formula was obtained describing the change of the velocity of an underwater projectile with water depth. From the formula, the velocity decay coefficient β=0.5ρw A o C d/m, was determined, where ρw is the water density, A o is the projection area of the projectile, C d is the drag coefficient and m is the mass of the projectile. A theoretical model was then presented to describe the motion of the projectile during entry. Based on the obtained value of β, when the projectile was treated equivalently as a sphere, the theoretical water depth for deep closure of the cavity was predicted. Received: 10 February 2000/Accepted: 20 July 2000  相似文献   

5.
A fully developed laminar Poiseuille flow subject to constant heat flux across the wall is analysed with respect to its stability behavior by applying a weakly nonlinear stability theory. It is based on an expansion of the disturbance control equations with respect to a perturbation parameter ε. This parameter is the small initial amplitude of the fundamental wave. This fundamental wave which is the solution of the linear (Orr-Sommerfeld) first order equation triggers all higher order effects with respect to ε. Heat transfer is accounted for asymptotically through an expansion with respect to a small heat transfer parameter ε T . Both perturbation parameters, ε and ε T , are linked by the assumption ε T =O2) by which a certain distinguished limit is assumed. The results for a fluid with temperature dependent viscosity show that heat transfer effects in the nonlinear range continue to act in the same way as in the initial linear range. Received on 11 August 1997  相似文献   

6.
The boundary layer problem of a power-law fluid flow with fluid injection on a wedge whose surface is moving with a constant velocity in the opposite direction to that of the uniform mainstream is analyzed. The free stream velocity, the injection velocity at the surface, moving velocity of the wedge surface, the wedge angle and the power law index of non-Newtonian fluid are assumed variables. The fourth order Runge–Kutta method modified by Gill is used to solve the non-dimensional boundary layer equations for non-Newtonian flow field. Without fluid injection, for every angle of wedge β, a limiting value for velocity ratio λ cr (velocity of the wedge surface/velocity of the uniform flow) is found for each power-law index n. The value of λ cr increases with the increasing wedge angle β. The value of wedge angle also restricts the physical characteristics of the fluid to be used. The effects of the different parameters on velocity profile and on skin friction are studied and the drag reduction is discussed. In case of C = 2.5 and velocity ratio λ = 0.2 for wedge angle β = 0.5 with the fluid with power law-index n = 0.5, 48.8% drag reduction is obtained.  相似文献   

7.
In the present study we have explored the effects of thermal buoyancy on flow of a viscoelastic second grade fluid past a vertical, continuous stretching sheet of which the velocity and temperature distributions are assumed to vary according to a power-law form. The governing differential equations are transformed into dimensionless form using appropriate transformations and then solved numerically. The methods here employed are (1) the perturbation method together with the Shanks transformation, (2) the local non-similarity method with second level of truncation and (3) the implicit finite difference method for values of ξ ( = Gr x /Re x 2, defined as local mixed convection parameter) ranging in [0, 10]. The comparison between the solutions obtained by the aforementioned methods found in excellent agreement. Effects of the elasticity parameter λ on the skin-friction and heat transfer coefficients have been shown graphically for the fluids having the values of the Prandtl number equal to 0.72, 7.03 and 15.0. Effects of the viscoelastic parameter and the mixed convection parameter, ξ, on the temperature and velocity fields have also been studied. We notice that with the increase in visco-elastic parameter λ, velocity decreases whereas temperature increases and that velocity gradient is higher than that of temperature. On leave of absence from the Department of Mathematics, University of Dhaka, Bangladesh.  相似文献   

8.
An analysis is made of heat transfer in the boundary layer of a viscoelastic fluid flowing over a stretching surface. The velocity of the surface varies linearly with the distance x from a fixed point and the surface is held at a uniform temperature T w higher than the temperature T of the ambient fluid. An exact analytical solution for the temperature distribution is found by solving the energy equation after taking into account strain energy stored in the fluid (due to its elastic property) and viscous dissipation. It is shown that the temperature profiles are nonsimilar in marked contrast with the case when these profiles are found to be similar in the absence of viscous dissipation and strain energy. It is also found that temperature at a point increases due to the combined influence of these two effects in comparison with its corresponding value in the absence of these two effects. A novel result of this analysis is that for small values of x, heat flows from the surface to the fluid while for moderate and large values of x, heat flows from the fluid to the surface even when T w >T . Temperature distribution and the surface heat flux are determined for various values of the Prandtl number P, the elastic parameter K 1 and the viscous dissipation parameter a. Numerical solutions are also obtained through a fourth-order accurate compact finite difference scheme. Received on 14 October 1997  相似文献   

9.
The effects of turbulence modeling on the prediction of equilibrium states of turbulent buoyant shear flows were investigated. The velocity field models used include a two-equation closure, a Reynolds-stress closure assuming two different pressure-strain models and three different dissipation rate tensor models. As for the thermal field closure models, two different pressure-scrambling models and nine different temperature variance dissipation rate ɛτ) equations were considered. The emphasis of this paper is focused on the effects of the ɛτ-equation, of the dissipation rate models, of the pressure-strain models and of the pressure-scrambling models on the prediction of the approach to equilibrium turbulence. Equilibrium turbulence is defined by the time rate of change of the scaled Reynolds stress anisotropic tensor and heat flux vector becoming zero. These conditions lead to the equilibrium state parameters, given by /ɛ, ττ, , Sk/ɛ and G/ɛ, becoming constant. Here, and τ are the production of turbulent kinetic energy k and temperature variance , respectively, ɛ and ɛτ are their respective dissipation rates, R is the mixed time scale ratio, G is the buoyant production of k and S is the mean shear gradient. Calculations show that the ɛτ-equation has a significant effect on the prediction of the approach to equilibrium turbulence. For a particular ɛτ-equation, all velocity closure models considered give an equilibrium state if anisotropic dissipation is accounted for in one form or another in the dissipation rate tensor or in the ɛ-equation. It is further found that the models considered for the pressure-strain tensor and the pressure-scrambling vector have little or no effect on the prediction of the approach to equilibrium turbulence. Received 21 April 2000 and accepted 21 February 2001  相似文献   

10.
Two hot-wire flow diagnostics have been developed to measure a variety of turbulence statistics in the buoyancy driven, air-helium Rayleigh–Taylor mixing layer. The first diagnostic uses a multi-position, multi-overheat (MPMO) single wire technique that is based on evaluating the wire response function to variations in density, velocity and orientation, and gives time-averaged statistics inside the mixing layer. The second diagnostic utilizes the concept of temperature as a fluid marker, and employs a simultaneous three-wire/cold-wire anemometry technique (S3WCA) to measure instantaneous statistics. Both of these diagnostics have been validated in a low Atwood number (A t  ≤ 0.04), small density difference regime, that allowed validation of the diagnostics with similar experiments done in a hot-water/cold-water water channel facility. Good agreement is found for the measured growth parameters for the mixing layer, velocity fluctuation anisotropy, velocity fluctuation p.d.f behavior, and measurements of molecular mixing. We describe in detail the MPMO and S3WCA diagnostics, and the validation measurements in the low Atwood number regime (A t  ≤ 0.04). We also outline the advantages of each technique for measurement of turbulence statistics in fluid mixtures with large density differences.  相似文献   

11.
This paper investigates the feasibility of using holographic interferometry in wind tunnel flows for measuring velocity fields rather than density or temperature fields. First results were obtained in a vortex street behind a cylinder at Re=190(U =0.7 m/s). The light scattered from an illuminated fluid plane was holographically recorded twice with the same reference beam. Using a time interval of 10 μs, local fluid displacements smaller than a few microns were recorded. The holographic plate was placed in front and as close as possible to the fluid plane. The interferograms obtained from the hologram reconstruction give information about one velocity component, at 45° with the illuminated plane. The alignment of the cylinder axis with this 45° direction provided definite confirmation about the vortex street having a non-negligible axial velocity. The constant velocity fluid region has proven to be very useful for quantifying the velocity information contained in the interferogram. Received: 8 November 1999/Accepted: 14 March 2000  相似文献   

12.
The effects of solid particles on the flow structure in the near field region of a coaxial water jet are investigated non-intrusively using molecular tagging velocimetry. Glass beads of 240 μm and specific gravity SG of 2.46 are used at three volume loadings of γv=0.03, 0.06, and 0.09% in the central water jet with a Reynolds number of 4.1×104. Measurements are acquired for four annular to central jet velocity ratios in the range 0.11≤ U o/U i≤1.15 at downstream distances up to six inner jet diameters and the results are analyzed for the effects of solid particles on the characteristics of flow. It is found that the addition of particles does not affect the mean fluid velocity profile in this region. The results also indicate a small and moderate enhancement of axial turbulent velocity and radial gradients of velocity fluctuations, respectively, due to the presence of particles.  相似文献   

13.
In this paper, a non-isobaric Marangoni boundary layer flow that can be formed along the interface of immiscible nanofluids in surface driven flows due to an imposed temperature gradient, is considered. The solution is determined using a similarity solution for both the momentum and energy equations and assuming developing boundary layer flow along the interface of the immiscible nanofluids. The resulting system of nonlinear ordinary differential equations is solved numerically using the shooting method along with the Runge-Kutta-Fehlberg method. Numerical results are obtained for the interface velocity, the surface temperature gradient as well as the velocity and temperature profiles for some values of the governing parameters, namely the nanoparticle volume fraction φ (0≤φ≤0.2) and the constant exponent β. Three different types of nanoparticles, namely Cu, Al2O3 and TiO2 are considered by using water-based fluid with Prandtl number Pr =6.2. It was found that nanoparticles with low thermal conductivity, TiO2, have better enhancement on heat transfer compared to Al2O3 and Cu. The results also indicate that dual solutions exist when β<0.5. The paper complements also the work by Golia and Viviani (Meccanica 21:200–204, 1986) concerning the dual solutions in the case of adverse pressure gradient.  相似文献   

14.
In the present paper the steady boundary-layer flows induced by permeable stretching surfaces with variable temperature distribution are investigated under the aspect of Reynolds' analogy r = St x /C f(x). It is shown that for certain stretching velocities and wall temperature distributions, “Reynolds' function”r, i.e. the ratio of the local Stanton number St x and the skin friction coefficient C f(x) equals −1/2 for any value of the Prandtl number Pr and of the dimensionless suction/injection velocity f w. In all of these cases, the dimensionless temperature field ϑ is connected to the dimensionless downstream velocity f by the simple relationship ϑ=(f )Pr. It is also shown that in the general case, Reynolds' function r may possess several singularities in f w. The largest of them represents a critical value, so that for f w<f w,crit the solutions of the energy equation (although they still satisfy all the boundary conditions) become nonphysical.  相似文献   

15.
This paper presents an experimental method for measuring the attenuation and the velocity of longitudinal ultrasonic waves propagating through flat epoxy polymer samples. The study takes place in the first phase of epoxy polymer's polymerization, where these materials pass slowly from liquid state to the solid state. For this purpose an experimental setup was introduced, suitable for the accurate evaluation of the acoustic properties Δα andc e , when the epoxy polymers are in their first phase of polymerization, while they are cured for 24 hours at room temperature (20°C). The ultrasonic method used is the pulse echo-through transmission technique. From the variation ofc e and Δα during the first phase of epoxy polymers curing, the three characteristic states: liquid, semi-solid and solid, are clearly determined. It is also observed that plasticizer reduces the testability and the semi-solid state shows greater attenuation than either the liquid or the solid state.  相似文献   

16.
Mixing by secondary flow is studied by particle image velocimetry (PIV) in a developing laminar pulsating flow through a circular curved pipe. The pipe curvature ratio is η = r 0/r c  = 0.09, and the curvature angle is 90°. Different secondary flow patterns are formed during an oscillation period due to competition among the centrifugal, inertial, and viscous forces. These different secondary-flow structures lead to different transverse-mixing schemes in the flow. Here, transverse mixing enhancement is investigated by imposing different pulsating conditions (Dean number, velocity ratio, and frequency parameter); favorable pulsating conditions for mixing are introduced. To obviate light-refraction effects during PIV measurements, a T-shaped structure is installed downstream of the curved pipe. Experiments are carried out for the Reynolds numbers range 420 ≤ Rest ≤ 1,000 (Dean numbers 126.6 ≤ Dn ≤ 301.5) corresponding to non-oscillating flow, velocity component ratios 1 ≤ (β = U max,osc/U m,st) ≤ 4 (the ratio of velocity amplitude of oscillations to the mean velocity without oscillations), and frequency parameters 8.37 < (α = r 0(ω/ν)0.5) < 24.5, where α2 is the ratio of viscous diffusion time over the pipe radius to the characteristic oscillation time. The variations in cross-sectional average values of absolute axial vorticity (|ζ|) and transverse strain rate (|ε|) are analyzed in order to quantify mixing. The effects of each parameter (Rest, β, and α) on transverse mixing are discussed by comparing the dimensionless vorticities (|ζ P |/|ζ S |) and dimensionless transverse strain rates (|ε P |/|ε S |) during a complete oscillation period.  相似文献   

17.
In this paper, a numerical analysis of the momentum and heat transfer of an incompressible fluid past a parallel moving sheet based on composite reference velocity U is carried out. A single set of equations has been formulated for both momentum and thermal boundary layer problems containing the following parameters: r the ratio of the free stream velocity to the composite reference velocity, σ (Prandtl number) the ratio of the momentum diffusivity of the fluid to its thermal diffusivity, and E c (E ck ) (Eckert number). The present study has been carried out in the domain 0 ≤ r ≤ 1. It is found that the direction of the wall shear changes in such an interval and an increase of the parameter r yields an increase in temperature.   相似文献   

18.
This paper reports the centerline evolutions of turbulent statistical properties in nine air jets issuing from differently-shaped nozzles into still air surroundings. All nozzles of investigation have nominally identical opening areas or equal equivalent diameters (D e ) and their aspect ratio (AR) varies from AR = 1 (circle) to AR = 2.5 (isosceles triangle). Present measurements were made at the Reynolds number (based on D e ) of approximately 15,000. Results show that the loss of jet-axisymmetry at the exit generally causes the mean velocity decaying faster, and the fluctuating intensity growing, in the near field, thus indicating the increased overall entrainment rate. It is also shown that a change of shape of the nozzle exit does not affect the asymptotic decay rate of the centreline velocity in the far field. The near-field structure of the isosceles-triangular jet is deduced to be most three-dimensional, compared with the circular counterpart from smooth contraction being least. These discrepancies, however, weaken as the downstream distance x is increased. Beyond x/D e  = 20–30, the normalized velocity spectra for all jets of small AR collapse well, indicating similar statistical behaviors over a wide range of scales in the central region. Indeed, sufficiently downstream from the exit, insignificant differences occur in jets’ velocity probability density function (PDF), the related skewness and flatness factors, and also in their Taylor and Kolmogorov microscales. It is demonstrated that all the length scales grow approximately linearly with x at x/D e  ≥ 20.  相似文献   

19.
This study is motivated by problems arising in oceanic dynamics. Our focus is the Navier–Stokes equations in a three-dimensional domain Ωɛ, whose thickness is of order O(ɛ) as ɛ → 0, having non-trivial topography. The velocity field is subject to the Navier friction boundary conditions on the bottom and top boundaries of Ωɛ, and to the periodicity condition on its sides. Assume that the friction coefficients are of order O3/4) as ɛ → 0. It is shown that if the initial data, respectively, the body force, belongs to a large set of H1ɛ), respectively, L2ɛ), then the strong solution of the Navier–Stokes equations exists for all time. Our proofs rely on the study of the dependence of the Stokes operator on ɛ, and the non-linear estimate in which the contributions of the boundary integrals are non-trivial.  相似文献   

20.
The streamwise evolution of an inclined circular cylinder wake was investigated by measuring all three velocity and vorticity components using an eight-hotwire vorticity probe in a wind tunnel at a Reynolds number Red of 7,200 based on free stream velocity (U ) and cylinder diameter (d). The measurements were conducted at four different inclination angles (α), namely 0°, 15°, 30°, and 45° and at three downstream locations, i.e., x/d = 10, 20, and 40 from the cylinder. At x/d = 10, the effects of α on the three coherent vorticity components are negligibly small for α ≤ 15°. When α increases further to 45°, the maximum of coherent spanwise vorticity reduces by about 50%, while that of the streamwise vorticity increases by about 70%. Similar results are found at x/d = 20, indicating the impaired spanwise vortices and the enhancement of the three-dimensionality of the wake with increasing α. The streamwise decay rate of the coherent spanwise vorticity is smaller for a larger α. This is because the streamwise spacing between the spanwise vortices is bigger for a larger α, resulting in a weak interaction between the vortices and hence slower decaying rate in the streamwise direction. For all tested α, the coherent contribution to [`(v2)] \overline{{v^{2}}} is remarkable at x/d = 10 and 20 and significantly larger than that to [`(u2)] \overline{{u^{2}}} and [`(w2)]. \overline{{w^{2}}}. This contribution to all three Reynolds normal stresses becomes negligibly small at x/d = 40. The coherent contribution to [`(u2)] \overline{{u^{2}}} and [`(v2)] \overline{{v^{2}}} decays slower as moving downstream for a larger α, consistent with the slow decay of the coherent spanwise vorticity for a larger α.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号