首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kinetics of urease denaturation by anionic surfactant (sodium n-dodecyl sulphate, SDS) at concentrations below the critical micelle concentration (CMC) is investigated spectrophotometrically at neutral pH and the corresponding two-phase kinetic parameters of the process are estimated from a three-state reversible process using a binomial exponential relation based on the relaxation time method as: Using a prepared computer program, the experimental data are properly fitted into a binomial exponential relation, considering a two-phase denaturation pathway including a kinetically stable folded intermediate formed at SDS concentration of 1.1 mM. Forward and backward rate constants are estimated as: k(1)=0.2141+/-4.5 x 10(-3), k(2)=5.173 x 10(-3)+/-8.3 x 10(-5), k(-1)=0.09432+/-3.6 x 10(-4) and k(-2)=2.079 x 10(-3)+/-5.6 x 10(-5)s(-1) for the proposed mechanism. The rate-limiting step as well as the reaction coordinates in the denaturation mechanism are established. The mechanism involves formation of a kinetically stable folded native like intermediate through the electrostatic interactions. The intermediate was found to be more stable even than the native form (by about 9 kJmol(-1)) and still hexamer, because no loss of amplitude was observed. Electrophoresis experiments on the native and surfactant/urease complexes indicated a higher mobility for the kinetically folded native like intermediate.  相似文献   

2.
In this paper, methods are described that are used for studying first-order reaction kinetics by gas chromatography. Basic theory is summarized and illustrated using the interconversion of 1-chloro-2,2-dimethylaziridine enantiomers as a representative example. For the determination of the kinetic and thermodynamic activation data of interconversion the following methods are reviewed: (i) classical kinetic methods where samples of batch-wise kinetic studies are analyzed by enantioselective gas chromatography, (ii) stopped-flow methods performed on one chiral column, (iii) stopped-flow methods performed on an achiral column or empty capillary coupled in series with two chiral columns, (iv) on-flow method performed on an achiral column coupled in series with two chiral columns, and (v) reaction gas chromatography, known as a dynamic gas chromatography, where the interconversion is performed on chiral column during the separation process. The determination of kinetic and thermodynamic activation data by methods (i) through (iv) is straightforward as the experimental data needed for the evaluation (particularly the concentration of reaction constituents) are accessible from the chromatograms. The evaluation of experiments from reaction chromatography method (v) is complex as the concentration bands of reaction constituents are overlapped. The following procedures have been developed to determination peak areas of reaction constituents in such complex chromatograms: (i) methods based on computer-assisted simulations of chromatograms where the kinetic activation parameters for the interconversion of enantiomers are obtained by iterative comparison of experimental and simulated chromatograms, (ii) stochastic methods based on the simulation of Gaussian distribution functions and using a time-dependent probability density function, (iii) approximation function and unified equation, (iv) computer-assisted peak deconvolution methods. Evaluation of the experimental data permits the calculation of apparent rate constants for both the interconversion of the first eluted (k (A-->B)(app)) as well as the second eluted (k(B-->A)(app)) enantiomer. The mean value for all the rate constants (from all the reviewed methods) was found for 1-chloro-2,2-dimethylaziridine A-->B enantiomer interconversion at 100 degrees C: k (A-->B)(app)=21.2 x 10(-4)s(-1) with a standard deviation sigma=10.7 x 10(-4). Evaluating data for reaction chromatography at 100 degrees C {k (app)=k(A-->B)(app)=k(B-->A)(app)=13.9 x 10(-4)s(-1), sigma=3.0 x 10(-4)s(-1)} shows that differences between k(A-->B)(app) and k(B-->A)(app) are the same within experimental error. It was shown both theoretically and experimentally that the Arrhenius activation energy (E(a)) calculated from Arrhenius plots (lnk(app) versus 1/T) is proportional to the enthalpy of activation {E(a)=DeltaH+RT}. Statistical treatment of Gibbs activation energy values gave: DeltaG (app)=110.5kJmol(-1), sigma=2.4kJmol(-1), DeltaG (A-->B)(app)=110.5kJmol(-1), sigma=2.2kJmol(-1), DeltaG (B-->A)(app)=110.3kJmol(-1), sigma=2.8kJmol(-1). This shows that the apparent Gibbs energy barriers for the interconversion of 1-chloro-2,2-dimethylaziridine enantiomers are equal DeltaG (app)=DeltaG(A-->B)(app)=DeltaG(B-->A)(app) and within the given precision of measurement independent of the experimental method used.  相似文献   

3.
In this work, the bioelectrocatalytical properties and kinetic characteristics of new oxidase amperometric biosensors based on two different ferrocene functionalized carbosilane polymers, polydiallylmethylsilane (PDAMS) and polymethyldiundecenylsilane (PMDUS) are described. In the development of these biodevices, glucose oxidase has been used as example of oxidase enzyme, and two different immobilization procedures have been studied. The polymer-modified electrodes act as efficient transducers for glucose sensing in anodic and cathodic aerobic conditions and also in anodic anaerobic conditions, and this fact turns them into useful devices for a wide field of applications. PMDUS has shown to be the bioelectrocatalyst with best kinetic and analytical properties in aerobic media while PDAMS was better in anaerobic conditions. The best aerobic biosensor developed displayed a strictly linear range from 0 to 3.0?mM, a detection limit of 7.8???M and a response time less than 2?s in an ascorbate interference free work potential interval. The apparent Michaelis?CMenten constant was calculated to be 1.36?mM according to the Lineweaver?CBurk equation.  相似文献   

4.
In order to determine the kinetic parameters of glucose oxidation catalysed by the enzyme glucose oxidase (GO) the initial velocity of hydrogen peroxide formation was measured using a rotating disc electrode (RDE). The major advantage of this method is the possibility of continuous measurement of the increase in hydrogen peroxide concentration. This means that the real initial reaction rate V0 can be determined, which is required for constructing a double-reciprocal plot. Several combinations of substrate concentrations (glucose and oxygen) were used. The method, in which a platinum black RDE was used, appeared to be very useful. Product inhibition experiments showed that the ping-pong mechanism is valid for GO. The three kinetic parameters of this mechanism were determined by initial velocity experiments.  相似文献   

5.
A kinetic study of the performance of third-generation biosensors for glucose based on glucose oxidase immobilized on a microporous matrix of the conducting polymer poly(pyrrole) is presented. The mechanism of the enzymatically catalyzed oxidation of glucose will be different in this type of biosensor as the natural electron acceptor oxygen is replaced by the conducting polymer. Different kinetic parameters are found for the immobilized glucose oxidase than for the enzyme in solution. Mediation by the conducting polymer is found to be very effective and no significant electron transfer to oxygen is observed. In addition to substrate transport limitation in the microporous matrix, the enzymatic reaction in the biosensors is limited by the applied potential.  相似文献   

6.
The immobilization of nitrate reductase (NR) was performed by entrapment in a laponite clay gel and cross-linking by glutaraldehyde. In presence of nitrate and methyl viologen, a catalytic current appeared at -0.60 V illustrating the enzymatic reduction of nitrate into nitrite via the reduced form of the freely diffusing methyl viologen. The electropolymerization of a water-soluble pyrrole viologen derivative within the interlamellar spaces and channels of the host clay matrix successfully carried out the electrical wiring of the entrapped NR. Rotating disk measurements led to the determination of kinetic constants, namely k(2)=10.7 s(-1) and K(M)=7 microM. These parameters reflect the efficiency of the electro-enzymatic reduction of nitrate and the substrate affinity for the immobilized enzyme.  相似文献   

7.
The properties of glucose biosensors based on dendrimer layers on a gold support, which depend on the method of immobilization of glucose oxidase (GOX), were studied by amperometry. The kinetic parameters of enzymatic reactions, response time, sensitivity, detection limit, linear range, and enzyme turnover were determined. We showed that a more stable and sensitive sensor was obtained when GOX was immobilized on the dendrimer by crosslinking with glutaraldehyde in vacuum. This biosensor was stable for at least eight weeks. The response time was approximately 1.3 min, the detection limit of glucose was 25 micro M, and the apparent Michaelis-Menten constant was relative low ( K(m)=1.1+/-0.1 mM) in comparison with that for GOX in solution. The reason for these differences is discussed. The example of the application of the developed biosensors for the detection of mercury is also presented. The inhibitory effect of mercury on GOX activity was observed at mercury concentration of 100 nM.  相似文献   

8.
The reaction of glucose with ferricyanide catalyzed by glucose oxidase from Aspergillus niger gives rise to a wide range of bistability as the flow rate is varied in a continuous flow stirred tank reactor. Oscillations in pH can be obtained by introducing a negative feedback on the autocatalytic production of H+ that drives the bistability. In our experiments, this feedback consists of an inflow of hydroxide ion at a rate that depends on [H+] in the reactor as k0[OH-]0[H+]/(K+[H+]). pH oscillations are found over a broad range of enzyme and ferricyanide concentrations, residence times (k0 (-1)), and feedback parameters. A simple mathematical model quantitatively accounts for the experimentally found oscillations.  相似文献   

9.
《Analytical letters》2012,45(8):1339-1357
Abstract

An amperometric enzyme electrode for the determination of glucose (<16mmol?1) is constructed by incorporating electron mediators tetrathiafulvalene in Nafion and subsequently coating with immobilized glucose oxidase. The results obtained from measurements of glucose in fermentation samples containing biomass or molasses indicate the utility of the electrode for glucose assay in such media over at least 12 weeks. Digital simulation is employed to study the cyclic voltammetry (CV) of Tetrathiafulvalene-Glucose Oxidase-Modified Glassy Carbon Electrode (TTF-GOD-GCE); the digital model is built and the effects of kinetic parameters on CV-curves are discussed. The response process of the Tetrathiafulvalene-Glucose Oxidase-Modified Electrode is partly explained by the simulation results and further research is expected to guide the design of biosensors and improve the properties of the enzyme-mediator modified electrode.  相似文献   

10.
A procedure for the enzymatic determination of alpha-glycerophosphate (alpha-GP) has been developed, using an automated in-house FIA system, with immobilized glycerol-3-phosphate oxidase (GPO) on non-porous glass beads, following optimization of the immobilization and analytical parameters. Fabricated single bead string reactors (SBSR) were used in connection with the FIA system, following optimization of its parameters. The half-life of GPO-SBSR regarding reduction of the enzyme activity was found to be 110 days for its use in 20 triplicate measurements daily and storage at 4 degrees C in the appropriate buffer. The regression equation of the calibration graph for the determination of alpha-GP was: A(max)=(10+/-2)x10(-4)+(22 134+/-12)x10(-4) (mmol l(-1)alpha-GP). The lower limit of quantitation was 0.74 mumol l(-1)alpha-GP and the RSD of the method 0.05% (r=0.9999). The same FIA system and procedure can be also used for the determination of the GPO activity, with the alpha-GP as substrate. The regression equation for this calibration graph was: A(max)=(23+/-18)x10(-4)+(190+/-1)x10(-4) (mug ml(-1) GPO), the lower limit of quantitation was 0.782x10(-3) mg ml(-1) (0.782 ppm) GPO and the RSD of the method 0.53% (r=0.9999). Serum samples obtained from hospitalized patients were deproteinized by gel filtration and analyzed under pseudo-first order conditions, at various concentrations of alpha-GP. A kinetic study of the reduction of alpha-GP in serum versus time is given and an observed reaction rate constant k(ob)=106.5x10(-4) min(-1) was determined.  相似文献   

11.
The kinetics of the reaction of benzyl radicals with [L(1)(H(2)O)RhH{D}](2+) (L(1)=1,4,8,11-tetraazacyclotetradecane) were studied directly by laser-flash photolysis. The rate constants for the two isotopologues, k=(9.3±0.6) × 10(7) M(-1) s(-1) (H) and (6.2±0.3) × 10(7) M(-1) s(-1) (D), lead to a kinetic isotope effect k(H)/k(D)=1.5±0.1. The same value was obtained from the relative yields of PhCH(3) and PhCH(2)D in a reaction of benzyl radicals with a mixture of rhodium hydride and deuteride. Similarly, the reaction of methyl radicals with {[L(1)(H(2)O)RhH](2+) + [L(1)(H(2)O)RhD](2+)} produced a mixture of CH(4) and CH(3)D that yielded k(H)/k(D)=1.42±0.07. The observed small normal isotope effects in both reactions are consistent with reduced sensitivity to isotopic substitution in very fast hydrogen-atom abstraction reactions. These data disprove a literature report claiming much slower kinetics and an inverse kinetic isotope effect for the reaction of methyl radicals with hydrides of L(1)Rh.  相似文献   

12.
Tannase is an inducible enzyme with important applications in the food and pharmaceutical industries. This enzyme was produced by the fungus Aspergillus niger GH1 under solid-state fermentation using polyurethane foam as solid support and tannic acid as sole carbon source and tannase inducer. Physicochemical properties of A. niger tannase were characterized, and the kinetic and thermodynamics parameters on methyl gallate hydrolysis were evaluated. The enzyme was stable in a pH range of 2-8 and a functional temperature range of 25-65 °C. The highest k(cat) value was 2,611.10 s(-1) at 65 °C. Tannase had more affinity for methyl gallate at 45 °C with a K(M) value of 1.82 mM and an efficiency of hydrolysis (k(cat)/K(M)) of 330.01 s(-1) mM(-1). The lowest E(a) value was found to be 21.38 kJ/mol at 4.4 mM of methyl gallate. The lowest free energy of Gibbs (ΔG) and enthalpy (ΔH) were found to be 64.86 and 18.56 kJ/mol, respectively. Entropy (ΔS) was -0.22 kJ/mol K. Results suggest that the A. niger GH1 tannase is an attractive enzyme for industrial applications due its catalytic and thermodynamical properties.  相似文献   

13.
A dual-electrode configuration for the highly selective detection of glucose in the diffusion layer of the substrate electrode is presented. In this approach, a glassy carbon electrode (GCE, substrate) modified with a conductive layer of glucose oxidase/Nafion/graphite (GNG) was used to create an interference-free region in its diffusion layer by electrochemical depletion of interfering electroactive species. A Pt microelectrode (tip, 5 microm in radius) was located in the diffusion layer of the GNG-modified GCE (GNG-G) with the help of scanning electrochemical microscopy. Consequently, the tip of the electrode could sense glucose selectively by detecting the amount of hydrogen peroxide (H2O2) formed from the oxidization of glucose on the glucose oxidase layer. The influences of parameters, including tip-substrate distance, substrate potential, and electrolyzing time, on the interference-removing efficiency of this dual-electrode approach have been investigated systematically. When the electrolyzing time was 30 s, the tip-substrate distance was 1.8 a (9.0 microm) (where a is the radius of the tip electrode), the potentials of the tip and substrate electrodes were 0.7 V and 0.4 V, respectively, and a mixture of ascorbic acid (0.3 mM), uric acid (0.3 mM), and 4-acetaminophen (0.3 mM) had no influence on the glucose detection. In addition, the current-time responses of the tip electrode at different tip-substrate distances in a solution containing interfering species were numerically simulated. The results from the simulation are in good agreement with the experimental data. This research provides a concept of detection in the diffusion layer of a substrate electrode, as an interference-free region, for developing novel microelectrochemical devices.  相似文献   

14.
Amperometric enzyme electrode for glucose is described based on the incorporation of glucose oxidase (GOD) into graphite paste modified with tetracyanoquinodimethane (TCNQ). The incorporated enzyme exhibits high activity and long-term stability over the earlier TCNQ-based glucose sensor (1). The sensor provides a linear response to glucose over a wide concentration range. The response time of the sensor is 15-50 sec, and the detection limit is 0.5 mM. Stable response to the substrate was obtained during a period of 35 d. Application of the sensor in the plasma analysis is reported.  相似文献   

15.
乙醇在Ni-Mo合金电极上氧化的动力学模型   总被引:2,自引:0,他引:2  
利用循环伏安以及稳态极化曲线等方法研究了在1mol.L^-1KOH溶液中,乙醇在电沉积Ni-Mo合金电极上氧化的电化学特性,提出了一个数学模型来预计乙醇在电沉积Ni-Mo合金电极上的电化学行为,在碱性溶液中,Ni(OH)2/NiOOH电对的氧化还原过程是乙醇氧化的前期步骤,Ni(OH)2/NiOOH)电对相应的速度常数(即k1和k-1)是电极电位的函数,乙醇氧化是通过一个速度常数为kc1的化学反应来完成,推导出了各个动力学方程并将实验数据与方程进行比较而获得各个动力学参数,电化学速度常数k1(E)=1.41*10^7exp(0.5FE/RT)mmol.cm^-2.s^-1以及k-1(E)=0.711exp(0.5FE/RT)mmol.cm^-2.s^-1,E是相对饱和甘汞电极(SCE)的电极电位,而化学反应的速  相似文献   

16.
An electrochemical in vivo flow-injection system with an on-line microdialysis sampling is proposed for the simultaneous monitoring of L-lactate and glucose in rat brain. In the first stage of the operation, the dialysate from the microdialysis probe is delivered to a sample loop of the six-way autoinjector by perfusing Ringer's solution for 80 s at 5 microl min(-1). In the second stage, the dialysate collected in the sample loop is automatically injected for 10 s into the flow-injection line. Injected dialysate is split into two streams and two portions pass through two channels with two different immobilized enzyme reactors (glucose oxidase and lactate oxidase immobilized reactors) to produce hydrogen peroxide from glucose and L-lactate in the dialysate. After a subsequent confluence of the streams, produced hydrogen peroxide can be detected amperometrically at a downstream poly(1,2-diaminobenzene) film-coated platinum electrode, without any interference from oxidizable species and proteins present in the dialysate. Because each channel has a different residence time, two peaks are obtained. The first peak corresponds to L-lactate and the second peak to glucose. The peak current is linearly related to the concentrations of L-lactate between 0.2 and 10 mM and glucose between 0.1 and 20 mM. The present method can be successfully applied to the simultaneous in vivo monitoring of L-lactate and glucose in rat brain. The analytical speed is 45 dialysates h(-1).  相似文献   

17.
Liu AL  Zhou T  He FY  Xu JJ  Lu Y  Chen HY  Xia XH 《Lab on a chip》2006,6(6):811-818
We firstly transformed the traditional Michaelis-Menten equation into an off-line form which can be used for evaluating the Michaelis-Menten constant after the enzymatic reaction. For experimental estimation of the kinetics of enzymatic reactions, we have developed a facile and effective method by integrating an enzyme microreactor into direct-printing polymer microchips. Strong nonspecific adsorption of proteins was utilized to effectively immobilize enzymes onto the microchannel wall, forming the integrated on-column enzyme microreactor in a microchip. The properties of the integrated enzyme microreactor were evaluated by using the enzymatic reaction of glucose oxidase (GOx) with its substrate glucose as a model system. The reaction product, hydrogen peroxide, was electrochemically (EC) analyzed using a Pt microelectrode. The data for enzyme kinetics using our off-line form of the Michaelis-Menten equation was obtained (K(m) = 2.64 mM), which is much smaller than that reported in solution (K(m) = 6.0 mM). Due to the hydrophobic property and the native mesoscopic structure of the poly(ethylene terephthalate) film, the immobilized enzyme in the microreactor shows good stability and bioactivity under the flowing conditions.  相似文献   

18.
Enzyme-responsive MRI-contrast agents containing a "self-immolative" benzylcarbamate moiety that links the MRI-reporter lanthanide complex to a specific enzyme substrate have been developed. The enzymatic cleavage initiates an electronic cascade reaction that leads to a structural change in the Ln(III) complex, with a concomitant response in its MRI-contrast-enhancing properties. We synthesized and investigated a series of Gd(3+) and Yb(3+) complexes, including those bearing a self-immolative arm and a sugar unit as selective substrates for β-galactosidase; we synthesized complex LnL(1), its NH(2) amine derivatives formed after enzymatic cleavage, LnL(2), and two model compounds, LnL(3) and LnL(4). All of the Gd(3+) complexes synthesized have a single inner-sphere water molecule. The relaxivity change upon enzymatic cleavage is limited (3.68 vs. 3.15 mM(-1) s(-1) for complexes GdL(1) and GdL(2), respectively; 37 °C, 60 MHz), which prevents application of this system as an enzyme-responsive T(1) relaxation agent. Variable-temperature (17)O NMR spectroscopy and (1)H NMRD (nuclear magnetic relaxation dispersion) analysis were used to assess the parameters that determine proton relaxivity for the Gd(3+) complexes, including the water-exchange rate (k(ex)(298), varies in the range 1.5-3.9×10(6) s(-1)). Following the enzymatic reaction, the chelates contain an exocyclic amine that is not protonated at physiological pH, as deduced from pH-potentiometric measurements (log K(H)=5.12(±0.01) and 5.99(±0.01) for GdL(2) and GdL(3), respectively). The Yb(3+) analogues show a PARACEST effect after enzymatic cleavage that can be exploited for the specific detection of enzymatic activity. The proton-exchange rates were determined at various pH values for the amine derivatives by using the dependency of the CEST effect on concentration, saturation time, and saturation power. A concentration-independent analysis of the saturation-power-dependency data was also applied. All these different methods showed that the exchange rate of the amine protons of the Yb(III) complexes decreases with increasing pH value (for YbL(3), k(ex)=1300 s(-1) at pH 8.4 vs. 6000 s(-1) at pH 6.4), thereby resulting in a diminution of the observed CEST effect.  相似文献   

19.
The kinetics of exoglucanase (Cel7A) from Trichoderma reesei was investigated in the presence of cellobiose and 24 different enzyme/Avicel ratios for 47 h, in order to establish which of the eight available kinetic models best explained the factors involved. The heterogeneous catalysis was studied and the kinetic parameters were estimated employing integrated forms of Michaelis-Menten equations through the use of nonlinear least squares. It was found that cellulose hydrolysis follows a model that takes into account competitive inhibition by cellobiose (final product) with the following parameters: Km = 3.8 mM, Kic = 0.041 mM, kcat = 2 h-1 (5.6 x 10-4 s-1). Other models, such as mixed type inhibition and those incorporating improvements concerning inhibition by substrate and parabolic inhibition, increased the modulation performance very slightly. The results support the hypothesis that nonproductive enzyme substrate complexes, parabolic inhibition, and enzyme inactivation (Selwyn test) are not the principal constraints in enzymatic cellulose hydrolysis. Under our conditions, the increment in hydrolysis was not significant for substrate/enzyme ratios <6.5.  相似文献   

20.
Ferric and copper hexacyanoferrates (PB and CuHCF, respectively) were electrodeposited on glassy carbon electrodes providing a suitable catalytic surface for the amperometric detection of hydrogen peroxide. Additionally glucose oxidase was immobilized on top of these electrodes to form glucose biosensors. The biosensors were made by casting glucose oxidase-Nafion layers onto the surface of the modified electrodes. The operational stability of the films and the biosensors were evaluated by injecting a standard solution (5 muM H(2)O(2) for PB, 5 mM H(2)O(2) for CuHCF and 2.5 mM glucose for both) over 5-10 h in a flow-injection system with the electrodes polarized at -50 (PB) and -200 mV (CuHCF) versus Ag/AgCl, respectively. The glucose biosensors demonstrated suitability for glucose determination: 0.0-2.5 mM (R(2)=0.9977) for PB and 0.0-10 mM (R(2)=0.9927) for CuHCF, respectively. The visualization of the redox catalyst modifiers (PB and CuHCF films) was presented by scanning electron micrographs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号