首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interrelation between the coagulation rate, adsorption and electrokinetic properties of silica polydisperse suspensions in the presence of cationic surfactants is studied. The highest coagulation rate is observed in a certain concentration range of the cationic surfactants. When pH values increases, an increasing amount of cationic surfactant is required to achieve maximal coagulation rate. For bisquaternary cationic surfactants, ethonium and decamethoxine, maximal coagulation rate is observed at concentrations by an order of magnitude lower than for monoquaternary cetyltrimethylammonium bromide. It is concluded that the suspensions lost their stability as a result of both neutralization of particle surface charge and flocculating effect of the cationic surfactants. Moreover, the flocculation mechanism depends on the cationic surfactant nature and physicochemical parameters of the medium, ionic strength and pH.  相似文献   

2.
The formation of self-assembled monolayers (SAMs) of adsorbed cationic or anionic surfactant molecules on atomically flat H-terminated Si(111) surfaces in aqueous solutions was investigated by in situ AFM measurements, using octyl trimethylammonium chloride (C8TAC), dodecyl trimethylammonium chloride (C12TAC), octadecyl trimethylammonium chloride (C18TAC)) sodium dodecyl sulfate (STS), and sodium tetradecyl sulfate (SDS). The adsorbed surfactant layer with well-ordered molecular arrangement was formed when the Si(111) surface was in contact with 1.0x10(-4) M C18TAC, whereas a slightly roughened layer was formed for 1.0x10(-4) M C8TAC and C12TAC. On the other hand, the addition of alcohols to solutions of 1.0x10(-4) M C8TAC, C12TAC, or SDS improved the molecular arrangement in the adsorbed surfactant layer. Similarly, the addition of a salt, KCl, also improved the molecular arrangement for both the cationic and anionic surfactant layers. Moreover, the adsorbed surfactant layer with a well-ordered structure was formed in a solution of mixed cationic (C12TAC) and anionic (SDS) surfactants, though each surfactant alone did not form the well-ordered layer. These results were all explained by taking into account electrostatic repulsion between ionic head groups of adsorbed surfactant molecules as well as hydrophobic interaction between their alkyl chains, which increases with the increasing chain length, together with the increase in the hydrophobic interaction or the decrease in the electrostatic repulsion by incorporating alcohol molecules into the adsorbed surfactant layer, the decrease in the electrostatic repulsion by increasing the concentration of counterions, and the decrease in the electrostatic repulsion by alternate arrangement of cationic and anionic surfactant molecules. The present results have revealed various factors to form the well-ordered adsorbed surfactant layers on the H-Si(111) surface, which have a possibility of realizing the third generation surfaces with flexible structures and functions easily adaptable to circumstances.  相似文献   

3.
The interactions between charged alkylacrylamide gels of varying hydrophobicity and charge density and the oppositely charged surfactant hexadecyltrimethylammonium (C16TA+) have been investigated to determine the conditions necessary to induce excess surfactant binding (beyond charge neutralization) and resolubilization of the polymer-surfactant complex. In all cases, an initial gel collapse occurred due to neutralization of the charges in the gel, and the volume of the collapsed gel was smaller than that of the corresponding neutral gel at the same surfactant concentration, as a result of the formation of interchain micellar cross-links. For gels containing neutral repeating units that were found previously to bind C16TA+, a subsequent sharp reswelling of the gel network occurred, beginning at a critical surfactant concentration called the cac(2). The reswelling is due to binding of excess surfactant, which results in the gels becoming recharged. For gels whose neutral repeating units do not bind C16TA+, there was no reswelling behavior (no cac(2)), but there was a gradual increase of the swelling back to that of the equivalent neutral gel with increasing surfactant concentration. The results are interpreted in terms of the expected surfactant binding isotherm.  相似文献   

4.
研究阴、阳离子表面活性剂混合体系(十二烷基氯代吡啶,辛基磺酸钠,辛基三乙基溴化铵/十二烷基苯磺酸钠)在硅胶,纯水和硅胶,矿化水界面上的吸附作用,探讨阴(阳)离子表面活性剂的存在对阳(阴)离子表面活性剂吸附作用的影响.结果表明,阴离子表面活性剂的存在基本不影响阳离子表面活性剂在带负电固体表面的吸附;而阳离子表面活性剂的存在却使本来吸附量就不大的阴离子表面活性剂在带负电的固体表面上不再吸附.在矿化水中阳离子表面活性剂的吸附量比在纯水中明显降低.从硅胶表面吸附机制解释了所得结果.  相似文献   

5.
The interaction has been studied in aqueous solutions between a negatively charged conjugated polyelectrolyte poly{1,4-phenylene-[9,9-bis(4-phenoxybutylsulfonate)]fluorene-2,7-diyl} copolymer (PBS-PFP) and several cationic tetraalkylammonium surfactants with different structures (alkyl chain length, counterion, or double alkyl chain), with tetramethylammonium cations and with the anionic surfactant sodium dodecyl sulfate (SDS) by electronic absorption and emission spectroscopy and by conductivity measurements. The results are compared with those previously obtained on the interaction of the same polymer with the nonionic surfactant C12E5. The nature of the electrostatic or hydrophobic polymer-surfactant interactions leads to very different behavior. The polymer induces the aggregation with the cationic surfactants at concentrations well below the critical micelle concentration, while this is inhibited with the anionic SDS, as demonstrated from conductivity measurements. The interaction with cationic surfactants only shows a small dependence on alkyl chain length or counterion and is suggested to be dominated by electrostatic interactions. In contrast to previous studies with the nonionic C12E5, both the cationic and the anionic surfactants quench the PBS-PFP emission intensity, leading also to a decrease in the polymer emission lifetime. However, the interaction with these cationic surfactants leads to the appearance of a new emission band (approximately 525 nm), which may be due to energy hopping to defect sites due to the increase of PBS-PFP interchain interaction favored by charge neutralization of the anionic polymer by cationic surfactant and by hydrophobic interactions involving the surfactant alkyl chains, since the same green band is not observed by adding either tetramethylammonium hydroxide or chloride. This effect suggests that the cationic surfactants are changing the nature of PBS-PFP aggregates. The nature of the polymer and surfactant interactions can, thus, be used to control the spectroscopic and conductivity properties of the polymer, which may have implications in its applications.  相似文献   

6.
Two types of precipitated silica powders modified by poly (dimethylsiloxane) (PDMS) were suspended in benzyl alcohol and their rheological properties were investigated as a function of silica volume fraction, φ. The suspensions were classified into sol, pre-gel, and gel states based on the increase in φ. An increase in the degree of surface modification by PDMS caused gelation at higher φ. Plots of apparent shear viscosity against shear rate in the sol and pre-gel states of highly modified silica suspensions showed weak shear thickening behavior, while the same plots for silica suspensions with a low modification level exhibited shear thinning behavior. The dynamic moduli of hydrophobic suspensions in the pre-gel and gel states were dependent on the surface modification: the storage modulus G′ was larger than the loss modulus G″ in the linear region and these moduli increased with increasing φ, irrespective of the silica powder. The linear region of the φ range for the precipitated silica suspensions was wider than that for the fumed silica powders modified by PDMS suspended in benzyl alcohol, while the G′ value in the linear region for the precipitated silica suspensions was less than those for the fumed silica suspensions.  相似文献   

7.
This paper demonstrates the use of polyelectrolytes to modify and manipulate the adsorption of ionic surfactants onto the hydrophilic surface of silica. We have demonstrated that the cationic polyelectrolyte poly(dimethyl diallylammonium chloride), poly-dmdaac, modifies the adsorption of cationic and anionic surfactants to the hydrophilic surface of silica. A thin robust polymer layer is adsorbed from a dilute polymer/surfactant solution. The resulting surface layer is cationic and changes the relative affinity of the cationic surfactant hexadecyl trimethylammonium bromide, C16TAB, and the anionic surfactant sodium dodecyl sulfate, SDS, to adsorb. The adsorption of C16TAB is dramatically reduced. In contrast, strong adsorption of SDS was observed, in situations where SDS would normally have a low affinity for the surface of silica. We have further shown that subsequent adsorption of the anionic polyelectrolyte sodium poly(styrene sulfonate), Na-PSS, onto the poly-dmdaac coated surface results in a change back to an anionic surface and a further change in the relative affinities of the cationic and anionic surfactants for the surface. The relative amounts of C16TAB and SDS adsorption depend on the coverage of the polyelectrolyte, and these preliminary measurements show that this can be manipulated.  相似文献   

8.
Rheological responses of the gelled (G) Snowtex 20 silica suspensions in the presence of LiCl, NaCl, and KCl have been investigated as functions of concentrations of silica and salt at pH 9.8 in terms of the Hofmeister series effect. The primary silica particle is isolated, and it is coagulated to form a gel above at 0.1, 0.3, and 0.5 M concentrations of LiCl, NaCl, and KCl, respectively, when the silica volume fraction φ is beyond 1.0%. The resulting G silica suspensions are classified into a strong‐link gel and their power‐law dependences of the critical strain as well as the storage modulus on the silica volume fraction were compared with the predictions by the fractal gel model. The resulting power‐law exponents of the critical strain are negative, this is in agreement with that predicted by the fractal model, and their magnitudes decrease with an increase in salt concentration, irrespective of the salt. Moreover, the magnitude of the power‐law exponent for the critical strain is well related to the Hofmeister series effect, namely it decreases in the order Li+, Na+, and K+, and the least hydrated K+ adsorbs in great enough in amount to create a less flexible network structure in the G silica suspension due to stronger attraction between the silica particles. Moreover, the stronger attraction, on the other hand, should be responsible for both the larger storage modulus and the higher power‐law exponent of the silica volume fraction dependence on the storage modulus. Therefore, the Hofmeister series effect is useful to understand the rheological properties of the G Snowtex 20 silica suspensions.  相似文献   

9.
Gel swelling experiments have been used to study the binding of ionic surfactants to a series of nonionic alkylacrylamide hydrogels of increasing hydrophobicity. The binding of hexadecyl trimethylammonium (C16TA+) to uncharged gels is sensitive to both the hydrophobicity of the gel and the counterion to the surfactant. There is a minimum hydrophobicity threshold below which binding of the surfactant does not occur, and this is influenced by the counterion to the surfactant. The surfactant concentration at the onset of binding, the critical association concentration (cac), decreases with increasing gel hydrophobicity. The maximum swelling of the gel (at intermediate network hydrophobicity) increases in the order of the Hofmeister series of anions, bromide (Br-) < chloride (Cl-) < acetate (Ac-). At higher gel hydrophobicity, differences in swelling are no longer observed on changing the counterion. A minimum hydrophobicity threshold was also found for the binding of the anionic surfactants sodium dodecyl sulfate (SDS) and sodium dodecyl-di(ethylene oxide)-sulfate (SD-(EO)2-S). Differences in the swelling behavior with network hydrophobicity are explained in terms of the degree of saturation of the gel with surfactant at the cmc.  相似文献   

10.
Abstract

This study investigated the effect of cationic, anionic (saturated and unsaturated), and nonionic surfactants on the formation, morphology, and surface properties of silica nanoparticles synthesized by the ammonium‐catalyzed hydrolysis of tetraethoxysilane in alcoholic media. Results indicate that at a relatively low surfactant concentration (1 × 10?3–1 × 10?6 M), cationic surfactants significantly affected the growth of silica particles as measured by dynamic light scattering and transmission electron microscopic analyses. In contrast, the anionic and nonionic surfactants showed relatively minor effects in the low concentration range. The magnitude of negative zeta potential was reduced for silica colloids that were synthesized in the presence of cationic surfactant because of charge neutralization. The presence of anionic surfactants only slightly increased the negative zeta potential while the nonionic surfactant showed no obvious effects. At high surfactant concentrations (>1 × 10?3 M), cationic and anionic surfactants both induced colloid aggregation, while the nonionic surfactant showed no effect on particle size. Raman spectroscopic analysis suggests that molecules of cationic surfactants adsorb on silica surfaces via head groups, aided by favorable electrostatic attraction, while molecules of anionic and nonionic surfactants adsorb via their hydrophobic tails.  相似文献   

11.
Mixtures of the partly fluorinated cationic surfactant HFDePC (N-(1, 1,2,2-tetrahydroperfluorodecanyl)-pyridinium chloride and deuterated headgroup) with C16TAC, hexadecyl-trimethylammonium chloride, have been investigated using small angle neutron scattering with contrast matching. Earlier results from this system suggested that a demixing occurred, into two coexisting populations of micelles, hydrocarbon-rich and fluorocarbon-rich, respectively. The present results could be explained by one type of mixed micelles with an inhomogeneous distribution of fluorinated and hydrogenated surfactants within the micelles although a demixing cannot be definitely excluded.  相似文献   

12.
Structure transitions, induced by the interaction with the cationic surfactant cetylpyridinium chloride in nanocomposite gels of poly(acrylamide) with incorporated suspensions of the two closely related layered clays bentonite and montmorillonite, were studied. Unexpectedly, different behaviors were revealed. X-ray diffraction measurements confirm that, due to the interaction with the surfactant, initially disordered bentonite platelets arrange into highly ordered structures incorporating alternating clay platelets and surfactant bilayers. The formation of these smectic structures also in the cross-linked polymer gels, upon addition of the surfactant, is explained by the existence of preformed, poorly ordered aggregates of the clay platelets in the suspensions before the gel formation. In the case of montmorillonite, smectic ordering of the disordered platelets in the presence of the surfactant is observed only after drying the suspensions and the clay-gel composites. Rheology studies of aqueous suspensions of the two clays, in the absence of both surfactant and gel, evidence a much higher viscosity for bentonite than for montmorillonite, suggesting smaller clay-aggregate size in the latter case. Qualitatively consistent results are obtained from optical micrographs.  相似文献   

13.
The natural packaging of DNA in the cell by histones provides a particular environment affecting its sensitivity to oxidative damage. In this work, we used the complexation of DNA by cationic surfactants to modulate the conformation, the dynamics, and the environment of the double helix. Photo-oxidative damage initiated by benzophenone as the photosensitizer on a plasmid DNA complexed by dodecyltrimethylammonium chloride (DTAC), tetradecyltrimethylammonium chloride (TTAC), cetyltrimethyammonium chloride (CTAC) and bromide (CTAB) was detected by agarose gel electrophoresis. By fluorescent titration in the presence of ethidium bromide (EB) and agarose gel electrophoresis, we experimentally confirmed the complexation diagrams with a critical aggregation concentration on DNA matrix (CAC DNA) delimiting two regions of complexation, according to the DNA-phosphate concentration. The study of the photo-oxidative damage shows, for the first time, a direct correlation between the DNA complexation by these surfactants and the efficiency of DNA cleavage, with a maximum corresponding to the CAC DNA for DTAC and CTAC, and to DNA neutralization for CTAC and CTAB. The localization of a photosensitizer having low water solubility, such as benzophenone, inside the hydrophobic domains formed by the surfactant aggregated on DNA, locally increases the photoinduced cleavage by the free radical oxygen species generated. The inefficiency of a water-soluble quencher of hydroxyl radicals, such as mannitol, confirmed this phenomenon. The detection of photo-oxidative damage constitutes a new tool for investigating DNA complexation by cationic surfactants. Moreover, highlighting the drastically increased sensitivity of a complexed DNA to photo-oxidative damage is of crucial importance for the biological use of surfactants as nonviral gene delivery systems.  相似文献   

14.
The swelling behavior in the solutions of sodium chloride, linear polyelectrolytes and ionic surfactants of the composites based on clay mineral bentonite (BENT) embedded in neutral and slightly charged poly(acrylamide) (PAAm) gels is studied. Negatively charged flat clay particles incorporated into polymer gel adsorb oppositely charged surfactant and linear polyelectrolyte and attract the charged chains of cationic polymer matrix. The results of SAXS study manifest the formation of lamella structure of the cationic surfactant adsorbed by the clay plates. The gels loaded with the clay show a strong response to changes in the nature and the composition of the ionic environment.  相似文献   

15.
Two series of polyampholyte gels formed from sodium methacrylate and diallyldimethylammonium chloride with variable composition were synthesized in water and in aqueous salt solution. It is shown that the swelling properties of polyampholyte gels are directly related to their chemical structure, which is defined by the process of gel synthesis. The swelling ratio of the polyampholyte gels prepared in salt solution is large compared with the gels prepared in pure water i.e. the polyampholyte gels with balanced stoichiometry show minimal swelling.The interaction of the polyampholyte gels with ionic surfactants (cationic, cetylpyridinium chloride and anionic, sodium dodecylbenzenesulphonate) was studied. It was shown that for polyampholyte gels with an excess of the charges of one sign the addition of oppositely charged surfactant leads to the collapse of the gel. It was found that the efficiency of surfactants absorption is determined by the ratio of positive and negative charges in the chains of polyampholyte gels.  相似文献   

16.
The effects of benzethonium chloride, sodium dodecylbenzenesulfonate, and 4-(1,1,3,3-(tetramethylbutyl)phenyl poly(ethylene glycol) on the zeta potential and aggregation stability of aqueous rutile-form titanium dioxide suspensions are studied in the pH range of 2–12. It is shown that the nonionic surfactant does not affect significantly the zeta potential and aggregation stability of the suspensions. The influence of ionic surfactants on the aggregation stability of the suspensions considerably depends on the pH of a medium. At pH values above the isoelectric point of titanium dioxide suspensions (pH0 = 6.2), the suspensions demonstrate a high aggregation stability in the presence of the anionic surfactant, sodium dodecylbenzene-sulfonate (irrespective of its content), while, at pH < pH0, the aggregation stability of the suspensions markedly increases with the surfactant concentration. In the presence of the cationic surfactant, benzethonium chloride, the aggregation stability of the suspensions is independent of the surfactant concentration at pH < pH0, whereas, at pH > pH0, it increases with the surfactant concentration.  相似文献   

17.
The structure and viscoelastic properties of fumed silica gels in dodecane were studied by means of dynamic rheology. With increasing the specific surface area of fumed silica nanoparticles, the plateau elastic modulus (G′), which is frequency-independent and shows the characteristic of a network of the fumed silica gels, decreases. Such networks of fumed silica gels show a significant temperature-dependent behavior and a transition temperature (T c) related with the restructuring of nanoparticle chain aggregates of fumed silica in gels. Under oscillatory shear, the fumed silica gels experience disorganization and reorganization and present strong structural recovery ability after adjusting oscillatory shear (AOS) at small strain amplitudes (1–10%), and a more perfect network structure than that in origin gels can be induced. Elevated temperature (above T c) improves the network structure to be more compact and stronger than that at a lower temperature, as a result, the deformation resistance during the AOS period and the structural recovery after AOS are enhanced. These results indicate that the network structure and viscoelastic properties of fumed silica gels can be tailored and optimized by performing small-amplitude oscillatory shear at a properly selected temperature.  相似文献   

18.
The aggregation behavior of a novel class of surfactants, p-n-alkylbenzamidinium chlorides, has been investigated. The thermodynamics of aggregation of p-n-decylbenzamidinium chloride mixed with cationic and anionic cosurfactants has been studied using isothermal titration calorimetry. For mixtures of p-n-decylbenzamidinium chloride with n-alkyltrimethylammonium chlorides, the aggregation process is enthalpically more favorable than for the pure n-alkyltrimethylammonium chlorides, probably caused by diminished headgroup repulsion due to charge delocalization in the amidinium headgroup. A critical aggregation concentration between 3 and 4 mM has been extrapolated for p-n-decylbenzamidinium chloride at 40 degrees C, around two times lower than that of similar surfactants without charge delocalization in the headgroup and well comparable to that of similar surfactants with charge delocalization in the headgroup. In mixtures of p-n-decylbenzamidinium chloride with either sodium n-alkylsulfates or sodium dodecylbenzenesulfonate, evidence is found for the formation of bilayer aggregates by the pseudo-double-tailed catanionic surfactants composed of p-n-decylbenzamidinium and the anionic surfactant. These aggregates are solubilized to mixed micelles by excess free anionic surfactant at the measured critical aggregation concentration.  相似文献   

19.
流变学法研究表面活性剂与HPAM的相互作用   总被引:1,自引:0,他引:1  
流变学法研究表面活性剂与HPAM的相互作用;聚合物;表面活性剂;相互作用;流变学方法  相似文献   

20.
The hydrophobic fumed silica suspensions physically pre-adsorbed poly(N-isopropylacrylamide) (PNIPAM) in water could prepare oil dispersed in water (O/W) Pickering emulsion by mixing of silicone oil. The resulting Pickering emulsions were characterized by the measurements of volume factions of emulsified silicone oil, adsorbed amounts of the silica suspensions, oil droplet size, and some rheological responses, such as stress-strain sweep curve and dynamic viscoelastic moduli as a function of the added amount of PNIPAM. Moreover, their characteristics were compared with those of the O/W Pickering emulsions prepared by the hydrophilic fumed silica suspensions pre-adsorbed PNIPAM. For the emulsions prepared by the hydrophobic silica suspensions, an increase in the added amount of PNIPAM led to (1) a decrease in the volume fraction of the emulsified oil in the emulsified phase, (2) both the size of oil droplets and the adsorbed amount of the corresponding silica suspensions being almost constant, except for the higher added amounts, and (3) both the storage modulus (G′) and the yield shear strain being constant. The term of 1 is the same for the emulsions prepared by the hydrophilic silica suspensions, whereas both the adsorbed amount of the corresponding silica suspension and the G′ value increase and both the droplet size and the yield shear strain decrease with an increase in the added amount of PNIPAM. The differences between the rheological properties of the emulsions prepared by the hydrophilic silica suspensions and those by the hydrophobic ones are attributed to the hydrophobic interactions of the flocculated silica particles in the Pickering emulsions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号