首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Modulational instability of travelling plane waves is often considered as the first step in the formation of intrinsically localized modes (discrete breathers) in anharmonic lattices. Here, we consider an alternative mechanism for breather formation, originating in oscillatory instabilities of spatially periodic or quasiperiodic nonlinear standing waves (SWs). These SWs are constructed for Klein-Gordon or Discrete Nonlinear Schr?dinger lattices as exact time periodic and time reversible multibreather solutions from the limit of uncoupled oscillators, and merge into harmonic SWs in the small-amplitude limit. Approaching the linear limit, all SWs with nontrivial wave vectors (0 < Q < π) become unstable through oscillatory instabilities, persisting for arbitrarily small amplitudes in infinite lattices. The dynamics resulting from these instabilities is found to be qualitatively different for wave vectors smaller than or larger than π/2, respectively. In one regime persisting breathers are found, while in the other regime the system thermalizes. Received 6 October 2001 / Received in final form 1st March 2002 Published online 2 October 2002 RID="a" ID="a"e-mail: mjn@ifm.liu.se  相似文献   

2.
A double Nambu formalism is developed which can deal in a straight-forward manner with all possible instabilities of a single band with nesting Fermi surfaces. Besides the usual density waves and superconductivity, also strong coupling phenomena are considered, such as ferromagnetism, Martensitic instability, and the somewhat bizarre state of localized Cooper pairs. The system is solved in the mean field approximation which is valid when the Fermi surfaces are not too flat.  相似文献   

3.
Ward H  Taki M  Glorieux P 《Optics letters》2002,27(5):348-350
We investigate the effect of coupling between diffraction and walk-off on secondary instabilities in nondegenerate optical parametric oscillators. We show that traveling waves that propagate in the walk-off direction, which are generated at the onset of absolute instability, experience Eckhaus and zigzag phase instabilities. Each of these secondary instabilities splits into absolute and convective instabilities that modify the Eckhaus and zigzag instability boundaries. As a consequence, the stability domain of modulated traveling waves is enlarged and may coexist with uniform steady states. The predictions are consistent with the numerical solutions of the optical parametric oscillator model.  相似文献   

4.
A sequence of symmetry-breaking instabilities leading to a chaotic state has been discovered in the surface deformations of a fluid layer subjected to a vertical oscillation. For driving amplitudes above a critical value, a primary instability leads to circularly symmetric standing waves at half the driving frequency. A second instability at a higher threshold breaks the circular symmetry and leads to a slow precession of the pattern, so that the overall motion is quasiperiodic. Beyond a third threshold, azimuthal modulations produce chaotic time dependence A fourth instability leads discontinuously to a spatially disordered flow. The spatial structure associated with each instability has been determined qualitatively, and the frequency spectrum of the local surface deformation has been measured using a sensitive laser deflection technique.  相似文献   

5.
A system of nonlinear equations derived in a previous paper which describes the evolution of the beam-plasma instability in strong dissipative plasmas is solved numerically. It is shown that there are three characteristic solutions of the system of equations: the resonant dissipative instability, the nonresonant instability with strong dissipation and the nonresonant dissipative instability. A physical interpretation of essential features of these instabilities is given. The interaction of resonant and nonresonant waves in the system electron beam-strong dissipative plasma is examined. Some conclusions for the transport problem of electron beams in strong dissipative plasmas are obtained in this paper.  相似文献   

6.
The energy and momentum balance equations for a potential wave in a monoenergetic electron beam-plasma system are considered in the linear approximation, when the wave is in ?erenkov resonance with the beam particles. An energetic analysis of certain types of beam-plasma instabilities is given. It is shown that the energy and momentum balance equations are consistent with the dispersion relation for all unstable waves. From this fact follows that the energy and momentum densities of all linear unstable waves in reactive beam-plasma systems are equal to zero. An interpretation and a possible classification of beam-plasma instabilities are given.  相似文献   

7.
Two-stream instability in spatially separated plasma beams having a finite thickness are investigated in the quasihydrodynamic approximation. It is shown that in beams having a finite thickness the instability domain is bounded for both low and high drift velocities. The minimum drift velocity at which instability develops may be less than the corresponding magnitude in semibounded beams. With decreasing thickness of the layers, the maximum growth rate of the amplified waves falls off. An influence of a dielectric interlayer between beams on the character of the instability is revealed.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 15, No. 4, pp. 521–527, April, 1972.  相似文献   

8.
A dispersion relation is derived for capillary waves with arbitrary symmetry (with arbitrary azimuthal numbers) on the surface of a jet of an ideal incompressible dielectric liquid moving in an ideal incompressible dielectric medium along an external uniform electrostatic field. A tangential discontinuity in the velocity field on the jet surface is shown to cause Kelvin-Helmholtz periodical instability at the interface and destabilize axisymmetric, flexural, and flexural-deformational waves. Both the flexural and flexural-deformational instabilities have a threshold and are observed not at an arbitrarily small velocity of the jet but starting from a certain finite value. It is shown that the instability of waves generated by the tangential discontinuity of the velocity field is periodic only formally (from the pure mathematical point of view). Actually, the jet disintegrates within the time of instability development, which is shorter than the half-cycle of the wave.  相似文献   

9.
孙亮 《中国物理快报》2008,25(4):1343-1346
The essence of shear instability is reviewed both mathematically and physically, which extends the instability theory of a sheet vortex from the viewpoint of vortex dynamics. For this, the Kelvin-Arnol'd theorem is retrieved in linear context, i.e., the stable flow minimizes the kinetic energy associated with vorticity. Then the mechanism of shear instability is explored by combining the mechanisms of both Kelvin Helmholtz instability (K-H instability) and resonance of waves. The waves, which have the same phase speed with the concentrated vortex, have interactions with the vortex to trigger the instability. The physical explanation of shear instability is also sketched by extending Batchelor's theory. These results should lead to a more comprehensive understanding on shear instabilities.  相似文献   

10.
反应扩散系统中螺旋波的失稳   总被引:10,自引:0,他引:10  
欧阳颀 《物理》2001,30(1):30-36
文章以反应扩散系统为例,介绍了在可激发系统与振荡系统中螺旋波产生、发展、演化的一些基本性质及规律,并讨论了作者近年来对螺旋波的各种失稳途径、时空混沌的产生机理及螺旋波控制方面所做的实验与理论工作,重点讨论了两类螺旋波失稳现象:爱克豪斯失稳与多普勒失稳,两类失稳都使系统从有规律的螺旋波态变为时空混沌(缺陷湍流)态。  相似文献   

11.
Nonlinear waves in mathematical models of nonequilibrium spatially uniform media with the oscillatory instability of the trivial state are considered. The models are based on the generalized Ginsburg-Landau equations. For the long-wave system, i.e. that described by two-component reaction-diffusion equations, we obtain the full stability conditions for monochromatic plane travelling waves. The basic part of the paper is devoted to the short-wave system which can be described by reaction-diffusion equations with not less than three components or by a two-component system with residual nonlocality. We construct the Ginsburg-Landau equation for this system, and we find its general quasistationary one-dimensional solution which is a travelling wave modulated by a travelling envelope wave. The stability of this solution is investigated with the especial emphasis on different important particular cases. The obtained results are compared with experimental observations of different waves on fronts of detonation and non-gaseous combustion (which also are characterized by the oscillatory short-wave instability of the trivial state), and the qualitative agreement between theoretical and experimental results is demonstrated.  相似文献   

12.
The problem of the development of shear instability in a three-layer medium simulating the flow of a stratified incompressible fluid is considered. The hydrodynamic equations are solved by expanding the Hamiltonian in a small parameter. The equations for three interacting waves, one of which is unstable, have been derived and solved numerically. The three-wave interaction is shown to stabilize the instability. Various regimes of the system’s dynamics, including the stochastic ones dependent on one of the invariants in the problem, can arise in this case. It is pointed out that the instability development scenario considered differs from the previously considered scenario of a different type, where the three-wave interaction does not stabilize the instability. The interaction of wave packets is considered briefly.  相似文献   

13.
For a one-dimensional finite elastic continuum with distributed contacts and periodic boundary conditions, the presence of unstable waves is investigated. The stability of the waves is evaluated and explanations for instabilities under a constant coefficient of friction are provided. A negative slope in the coefficient of friction as a function of sliding speed is not a necessary condition for the occurrence of dynamic instability. Dynamic instability occurs in the form of self-excited, unstable, travelling waves. The stabilizing effects of external and internal damping were studied. Low- and high-frequency terms of the travelling waves are stabilized by adding external and internal damping respectively. Responses corresponding to unstable eigenvalues can dominate the system response. It is presumed that this can lead to squeaking or squealing noise in applications.  相似文献   

14.
We study experimentally the Bloch-wave instabilities in optically induced photonic lattices. We reveal two different instability scenarios associated with either the transverse modulational instability of a single Bloch wave or the nonlinear interband coupling between different Bloch waves. We show that the transverse instability is greatly enhanced in the induced lattice in comparison with homogeneous media.  相似文献   

15.
The transition from stationary to chaotic spin-wave soliton trains has been observed. The experiment utilized cw excitation of envelope solitons through self-modulation instability of spin waves. By increasing the spin-wave power, the secondary self-modulation instability succeeded the primary modulation instability, resulting in after-modulation of the soliton train amplitude. Further increase of the spin-wave power led to development of the higher-order instabilities, resulting in formation of the chaotic soliton train.  相似文献   

16.
Harsha Jalori  AK Gwal 《Pramana》2001,56(6):779-784
Recent observation and theoretical investigations have led to the significance of electrostatic ion cyclotron (EIC) waves in the electrodynamics of acceleration process. The instability is one of the fundamental of a current carrying magnetized plasma. The EIC instability has the lowest threshold current among the current driven instabilities. On the basis of local analysis where inhomogeneities like the magnetic shear and the finite width current channel, have been ignored which is prevalent in the magnetospheric environment. On the basis of non-local analysis interesting modification has been incorporated by the inclusion of magnetic shear. In this paper we provide an analytical approach for the non-local treatment of current driven electrostatic waves in presence of parallel electric field. The growth rate is significantly influenced by the field aligned electron drift. The presence of electric field enhances the growth of EIC waves while magnetic shear stabilizes the system.  相似文献   

17.
Within the framework of the special relativity, the system of reference comoving with Alfvén wave is defined and the form of the perturbations with respect to this system are deduced. The system of equations corresponding to the interaction of the waves, in the case when the relativistic Alfvén wave can generate new Alfvén waves and magnetosonic waves, is obtained in the most general form. In the one-dimensional case the time dependent perturbation method is used for obtain the dispersion equation for the relativistic coupled waves (decay processes). Finally, by solving numerically the dimensionless dispersion equation, the instability domains of the Alfvén waves are obtained. It is shown that there are possible decay processes and modulational instabilities.  相似文献   

18.
The dynamical interaction between filaments and motor proteins is known for their propensity to self-organize into spatio-temporal patterns. Since the filaments are polar in the sense that motors define a direction of motion on them, the system can display a spatially homogeneous polar-filament orientation. We show that the latter anisotropic state itself may become unstable with respect to inhomogeneous fluctuations. This scenario shares similarities with instabilities in planarly aligned nematic liquid crystals: in both cases the wave vector of the instability may be oriented either parallel or oblique to the polarity axis. However, the encountered instabilities here are long-wave instead of short-wave and the destabilizing modes are drifting ones due to the polar symmetry. Additionally a nonpropagating transverse instability is possible. The stability diagrams related to the various wave vector orientations relative to the polarity axis are determined and discussed for a specific model of motor-filament interactions.  相似文献   

19.
Dynamical instabilities in fluid mechanics are responsible for a variety of important common phenomena, such as waves on the sea surface or Taylor vortices in Couette flow. In granular media dynamical instabilities have just begun to be discovered. Here we show by means of molecular dynamics simulation the existence of a new dynamical instability of a granular mixture under oscillating horizontal shear, which leads to the formation of a striped pattern where the components are segregated. We investigate the properties of such a Kelvin-Helmholtz-like instability and show how it is connected to pattern formation in granular flow and segregation.  相似文献   

20.
何彩霞  简粤  祁秀英  薛具奎 《中国物理 B》2014,23(2):25202-025202
Parametric instabilities induced by the coupling excitation between the high frequency quantum Langmuir waves and the low frequency quantum ion-acoustic waves in single-walled carbon nanotubes are studied with a quantum Zakharov model. By linearizing the quantum hydrodynamic equations, we get the dispersion relations for the high frequency quantum Langmuir wave and the low frequency quantum ion-acoustic wave. Using two-time scale method, we obtain the quantum Zaharov model in the cylindrical coordinates. Decay instability and four-wave instability are discussed in detail. It is shown that the carbon nanotube's radius, the equilibrium discrete azimuthal quantum number, the perturbed discrete azimuthal quantum number, and the quantum parameter all play a crucial role in the instabilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号