首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yang B  Tian L  Zhang H  Zhang W  Xu H  Xie Z  Lu P  Zhang M  Yu J  Lu D  Ma Y  Shen J  Liu X 《The journal of physical chemistry. B》2006,110(34):16846-16851
To reveal the nature of the zinc(II)-ion-induced ionochromic effect of bipyridine (bpy)-containing pi-conjugated polymers, we proposed an electrostatic interaction mechanism to illustrate our recent experimental findings [Tian, L., et al. J. Phys. Chem. B 2005 109 (15), 6944]. Our theoretical analysis was based on the semiempirical (INDO/2) calculation of spectral properties and electronic structures of difluorene-substituted bpy model compounds. Our calculations show that the zinc(II)-induced ionochromic effect can be attributed to the electrostatic interaction between the zinc(II) ion and the polymer. Zinc(II) ion acts as a positive point charge with varied charge quantities, which is responsible for the red-shifted absorption spectra compared with those of the metal-free compound. The counterion ionochromic effect of the zinc(II) ion is also discussed. The proposed mechanism is possibly applied to the ionochromic effect induced by other metal ions such as Cd(II) and Hg(II).  相似文献   

2.
[Ru(bpy)(3)](2+) (bpy = 2,2'-bipyridine) ions were entrapped into the cavities of two-dimensional anionic sheet-like coordination polymeric networks of [M(dca)(3)](-) (dca = dicyanamide; M = Mn(II) and Fe(II)). The prepared compounds, {[Ru(bpy)(3)][Mn(dca)(3)](2)}(n) (1) and {[Ru(bpy)(3)][Fe(dca)(3)](2)}(n) (2), were structurally characterized by X-ray single crystal analysis. The spectroscopic properties of the [Ru(bpy)(3)](2+) ion dramatically changed on its entrapment in [M(dca)(3)](-). The [Ru(bpy)(3)](2+) moiety present in 1 and 2 exhibits novel dual photo-emission at room temperature.  相似文献   

3.
The preparation, properties, x-ray powder patterns, and TGA curves are given for cobalt(II) dimethyl-, methylphenyl- and diphenylphosphinate. The polymeric character of cobalt(II) methylphenylphosphinate is demonstrated by its colligative properties and melt indexes. These cobalt(II) phosphinates along with hybrid copolymers of zinc(II) or cobalt(II) were prepared by the reaction of the metal acetate with the appropriate phosphinic acid or mixture of phosphinic acids. A consideration of the hybrid copolymers leads to the conclusion that both the zinc(II) and cobalt(II) dimethyl- and diphenylphosphinates are likewise polymeric. Thermal stability is discussed in terms of the structures suggested, and it is shown that crystallinity is related to polymer symmetry.  相似文献   

4.
Adsorption of polyacrylic acid and its copolymers with acrylonitrile, containing different quantities of carboxyl groups, on the dispersion of zinc oxide was investigated. The kinetics of polymer desorption was investigated based on data concerning the change in concentration of free carboxylic groups of polymer and zinc ions in solution. The concentration of free carboxyl groups decreases and the concentration of zinc ions in the liquid phase above the residue after separation of zinc oxide particles increases with time, reaching a constant value. The dependence of the concentration of free carboxyl groups and zinc ions in the liquid phase on the initial concentration of polymer in the plateau section of the kinetic curve was investigated. Adsorption isotherms of copolymers depend on their solubility in water and can be described by different mathematical models.  相似文献   

5.
Polymer supported transition metal complexes of N,N′-bis (o-hydroxy acetophenone) hydrazine (HPHZ) Schiff base were prepared by anchoring its amino derivative Schiff base (AHPHZ) on cross-linked (6 wt%) polymer beads and then loading iron(III), copper(II) and zinc(II) ions in methanol. The loading of HPHZ Schiff base on polymer beads was 3.436 mmol g−1 and efficiency of complexation of polymer anchored HPHZ Schiff base for iron(III), copper(II) and zinc(II) ions was 83.21, 83.40 and 83.17%, respectively. The efficiency of complexation of unsupported HPHZ Schiff base for these metal ions was lower than polymer supported HPHZ Schiff base. The structural information obtained by spectral, magnetic and elemental analysis has suggested octahedral and square planar geometry for iron(III) and copper(II) ions complexes, respectively, with paramagnetic behavior, but zinc(II) ions complexes were tetrahedral in shape with diamagnetic behavior. The complexation with metal ions has increased thermal stability of polymer anchored HPHZ Schiff base. The catalytic activity of unsupported and polymer supported HPHZ Schiff base complexes of metal ions was evaluated by studying the oxidation of phenol (Ph) and epoxidation of cyclohexene (CH). The polymer supported metal complexes showed better catalytic activity than unsupported metal complexes. The catalytic activity of metal complexes was optimum at a molar ratio of 1:1:1 of substrate to oxidant and catalyst. The selectivity for catechol (CTL) and epoxy cyclohexane (ECH) in oxidation of phenol and epoxidation of cyclohexene was better with polymer supported metal complexes in comparison to unsupported metal complexes. The energy of activation for oxidation of phenol (22.8 kJ mol−1) and epoxidation of cyclohexene (8.9 kJ mol−1) was lowest with polymer supported complexes of iron(III) ions than polymer supported Schiff base complexes of copper(II) and zinc(II) ions.  相似文献   

6.
Porphyrins have a large π–π conjugation force between molecules, and they are easy to aggregate in solution, which affects the photoelectric properties of porphyrins. Connecting porphyrins to polymer links through covalent bonds not only retains the mechanical properties and thermal stability of polymer materials, but also has the photoelectric properties and catalytic properties of porphyrins, which improves the availability of materials. In this study, first, a porphyrin ligand with double bonds in the side chain was designed and the corresponding copper and zinc complexes were synthesized by adjusting the metal ions in the center of the pyrrole ring. Then, the metalloporphyrin complexes were copolymerized with methyl methacrylate (MMA), and two metalloporphyrin/PMMA copolymers were obtained: CPTPPCu/PMMA and CPTPPZn/PMMA. The structure of the compounds was characterized by IR, 1H NMR, MS, and UV-Vis spectra. Metalloporphyrin/PMMA copolymers were prepared into electrospun fiber materials by electrospinning. The morphology of the composites was studied by SEM, and the thermal stability and optical properties of electrospun fibers were studied by TGA and FL. The catalytic activity of electrospun fiber materials for the degradation of organic dyes was studied. The results showed that the efficiency of the metalloporphyrin/PMMA copolymer in photocatalytic degradation of methylene blue (MB) was better than that of the PMMA electrospun fiber blended with metalloporphyrin.  相似文献   

7.
Two sets of water‐soluble poly(phenylene vinylene)s were synthesized and their optical properties were studied. The aqueous solubility of all these polymers is rendered by pendant sulfonate groups. One set of polymers (polymer I series) contains, in addition to the sulfonate pendants, dimethoxy substituents, while the other (polymer II series) contains oligo(ethylene oxide) side chains. Within each set, polymers containing lithium (Ia and IIa), sodium (Ib and IIb), and potassium (Ic and IIc) counter ions were prepared. The two sets of polymers showed different properties from physical appearance (fiber vs film) to thermal properties and to optical properties. It was found that set I polymers, with shorter side chains, exhibit stronger aggregation in aqueous solutions than set II polymers, which led to their lower fluorescence quantum yields and lower polymer‐to‐MV2+ quenching efficiencies. Within each set, the effect of counter ions on optical properties was noted. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5123–5135, 2007  相似文献   

8.
Li MJ  Chu BW  Zhu N  Yam VW 《Inorganic chemistry》2007,46(3):720-733
A series of ruthenium(II) diimine complexes containing thia-, selena- and aza-crowns derived from 1,10-phenanthroline have been synthesized and characterized, and their photophysics and electrochemistry were studied. Their interaction with metal ions was investigated by UV-vis, luminescence, and 1H NMR spectroscopy. The crystal structures of [Ru(bpy)2(L1)](PF6)2, [Ru(bpy)2(L2)](ClO4)2, [Ru(bpy)2(L3)](ClO4)2, and [Ru(bpy)2(L4)](ClO4)2 have been determined. The luminescence properties of [Ru(bpy)2(L1)](ClO4)2 were found to be sensitive and selective toward the presence of Hg2+ ions in an acetonitrile solution. The addition of alkaline-earth metal ions, Zn2+, Cd2+, and Hg2+ ions, to the solution of [Ru(bpy)2(L6)](ClO4)2 in acetonitrile gave rise to large changes in the UV-vis and emission spectra. The binding of metal ions to [Ru(bpy)2(L6)](ClO4)2 was found to cause a strong enhancement in the emission intensities of the complex, with high specificity toward Hg2+ ions.  相似文献   

9.
We report the first examples of amine-functionalized K(2)[Os(II)(bpy)(CN)(4)] (bpy = 2,2'-bipyridine) complexes. The tetracyanoosmate complexes were prepared by UV irradiation (λ = 254 nm) of K(4)[Os(II)(CN)(6)] and primary amine-functionalized bpy ligands in acidic aqueous media. The aqueous solution pH dependences of the spectroscopic and redox properties of 4,4'- and 5,5'-substituted complexes have been investigated. The pendant amine functional groups and coordinated cyanide ligands are basic sites that can be sequentially protonated, thereby allowing systematic tuning of electrochemical and optical spectroscopic properties.  相似文献   

10.
Li Y  Xu G  Zou WQ  Wang MS  Zheng FK  Wu MF  Zeng HY  Guo GC  Huang JS 《Inorganic chemistry》2008,47(18):7945-7947
A novel zinc(II) 4-(5H-tetrazol)benzoic coordination polymer with an in situ generated tetrazole ligand exhibits the gsi (gamma-silicon) topology and high thermal stability; this compound possesses second-order nonlinear optical and interesting heat-induced photoluminescent properties.  相似文献   

11.
Vinylidene chloride copolymers have a number of superior properties, most notably, a high barrier to the transport of oxygen and other small molecules. As a consequence, these materials have assumed a position of prominence in the packaging industry. At processing temperatures these copolymers tend to undergo degradative dehydrochlorination. The dehydrochlorination reaction is a typical chain process with distinct initiation, propagation, and termination phases. It has been demonstrated that initiation of degradation is strongly facilitated by the presence of unsaturation along the backbone. Such unsaturation may be introduced via interaction of the polymer with a variety of agents which might commonly be encountered during polymerization or processing. The presence of an unsaturated unit within the polymer generates an allylic dichloromethylene which may function as a major defect (labile) site for the initiation of degradation. The conversion of these dichloromethylene units into non-reactive groups would interrupt propagation of the dehydrochlorination reaction and lead to the stabilization of the copolymer. Potential stabilization in the presence of metal formates has been examined using a vinylidene chloride/methyl acrylate (five mole percent) copolymer and thermogravimetric techniques. The effect of the metal formate on the stability of the polymer reflects the relative halogenophilicity of the metal cation present. Metal formates (sodium, calcium, nickel(II) and to a lesser extent lead(II), cadmium, manganese(II) and magnesium) may be expected to be ineffective as stabilizers for vinylidene chloride copolymers. At the other extreme, metal formates which contain cations sufficiently acidic to actively strip chlorine from the polymer backbone, e.g., zinc formate, will function to enhance the degradation process. An effective carboxylate stabilizer must contain a metal cation sufficiently acidic to interact with allylic chlorine and to facilitate its displacement by the carboxylate anion. Copper(II) formate may possess the balance of cation acidity and carboxylate activity to function as an effective stabilizer for vinylidene chloride copolymers.  相似文献   

12.
Ruthenium(II) polypyridyl complexes with macromolecular ligands poly(methylolacrylamide-co-vinylpyridine) and poly (acrylamide-co-vinylpyridine) have been synthesized. The macromolecular ruthenium (II) complexes which are soluble in water have been characterized and their absorption and emission properties have been studied in aqueous solution. Photolysis of the complex in aqueous solution leads to photoaquation reactions with release of coordinated pyridines of the polymer. In the case of monomeric complex, cis-[Ru(bpy)2(py)2]Cl2, photolysis in water in presence of Cl? ions produces only the substitution of the pyridine by water whereas in the polymeric complexes, [Ru(bpy)2(MAAM-co-VP)2]Cl2 photolysis in the presence of chloride produces [Ru(bpy)2(MAAM-co-VP)Cl]Cl and [Ru(bpy)2(AM-co-VP)Cl]Cl, respectively. Quantum yields for the photosubstitution reactions have been determined and mechanistic details are outlined.  相似文献   

13.
Formed through cooperative self-assembly of amphiphilic diblock copolymers and electronically conjugated porphyrinic near-infrared (NIR) fluorophores (NIRFs), NIR-emissive polymersomes (50 nm to 50 microm diameter polymer vesicles) define a family of organic-based, soft-matter structures that are ideally suited for deep-tissue optical imaging and sensitive diagnostic applications. Here, we describe magic angle and polarized pump-probe spectroscopic experiments that: (i) probe polymersome structure and NIRF organization and (ii) connect emitter structural properties and NIRF loading with vesicle emissive output at the nanoscale. Within polymersome membrane environments, long polymer chains constrain ethyne-bridged oligo(porphinato)zinc(II) based supermolecular fluorophore (PZn n ) conformeric populations and disperse these PZn n species within the hydrophobic bilayer. Ultrafast excited-state transient absorption and anisotropy dynamical studies of NIR-emissive polymersomes, in which the PZn n fluorophore loading per nanoscale vesicle is varied between 0.1-10 mol %, enable the exploration of concentration-dependent mechanisms for nonradiative excited-state decay. These experiments correlate fluorophore structure with its gross spatial arrangement within specific nanodomains of these nanoparticles and reveal how compartmentalization of fluorophores within reduced effective dispersion volumes impacts bulk photophysical properties. As these factors play key roles in determining the energy transfer dynamics between dispersed fluorophores, this work underscores that strategies that modulate fluorophore and polymer structure to optimize dispersion volume in bilayered nanoscale vesicular environments will further enhance the emissive properties of these sensitive nanoscale probes.  相似文献   

14.
Two novel conjugated polymers with alternating main chain structures of zinc porphyrin-terthiophene (P-PTT) and zinc porphyrin-oligothiophene (P-POT) were synthesized by Stille reaction. The effect of different lengths of thiophene chains on the thermal, optical, electrochemical, and photovoltaic properties of the two copolymers were investigated in detail. P-PTT exhibited higher onset decomposition temperature (392 °C) and glass-transition temperature (152 °C) than those of P-POT. The introduction of thiophene units in the meso-aryl positions of porphyrin resulted in the red shift and broader absorption spectrum compared with zinc porphyrin (PZn) monomer both in chloroform solutions and on thin solid films. The electrochemical properties indicated that the energy levels of the polymers were suitable for efficient charge transfer and separation at the interface between the polymer donor and PCBM acceptor. The bulk heterojunction solar cells based on P-PTT and P-POT showed power conversion efficiencies up to 0.32% and 0.18%, respectively.  相似文献   

15.
Homo- and heterobimetallic complexes of composition [(bpy)(2)M(II)(H(2)Imbzim)M'(II)(bpy)(2)](ClO(4))(3)·nH(2)O, where M(II) = M'(II) = Os (1), M(II) = Ru and M'(II) = Os (2), H(3)Imbzim = 4,5-bis(benzimidazole-2-yl)imidazole, and bpy = 2,2'-bipyridine, have been synthesized and characterized using standard analytical and spectroscopic techniques. Both of the complexes crystallized in monoclinic form with the space group P2(1)/m for 1 and P2(1)/n for 2. The absorption spectra, redox behavior, and luminescence properties of the complexes have been thoroughly investigated. The complexes display very intense, ligand-centered absorption bands in the UV region and moderately intense metal-to-ligand charge-transfer (MLCT) bands in the visible region. The bimetallic complexes show two successive one-electron reversible metal-centered oxidations. The strong fluorescence of free H(3)Imbzim is completely quenched in the metal complexes by energy transfer to the metal-based units, which exhibit their characteristic MLCT phosphorescence. The luminescence data of the heterometallic complex 2 show that electronic energy transfer takes place from the ruthenium center to the osmium-based component. The anion binding properties of the complexes have been studied in solutions using absorption, emission, and (1)H NMR spectral measurements. The metalloreceptors act as sensors for F(-) and AcO(-) ions. Sensing studies indicate the presence of two successive anion-induced deprotonation steps, leading to the formation of [(bpy)(2)M(HImbzim)M'(bpy)(2)](2+) and [(bpy)(2)M(Imbzim)M'(bpy)(2)](+) species. Double deprotonation is also observed in the presence of hydroxide. The binding affinities of different anions toward the receptors have been evaluated. Cyclic voltammetry measurements carried out in acetonitrile have provided evidence in favor of anion-dependent electrochemical responses of the bimetallic metalloreceptors with F(-) and AcO(-) ions.  相似文献   

16.
Novel temperature-responsive copolymers of N-isopropylacrylamide and monoaza-tetrathioether derivative, were synthesized for the selective extraction of soft metal ions such as silver(I), copper(I), gold(III) and palladium(II) ion. The ratio between N-isopropylacrylamide group and monoaza-tetrathioether group in the copolymer was determined. The ratio between N-isopropylacrylamide group and monoaza-tetrathioether group varied in the range of 66:1–187:1. Each lower critical solution temperature (LCST) of the polymer solution was determined spectrophotometrically by the relative absorbance change at 750 nm via temperature of the polymer solution. Metal ion extraction using the copolymer with appropriate counter anions such as picrate ion, nitrate or perchlorate ion was examined. Soft metal ions such as silver(I), copper(I), gold(III) and palladium(II) ion were extracted selectively into the solid polymer phase. The extraction efficiency of a metal ion such as silver ion increased as the increase of the ratio of the monoaza-tetrathioether group to N-isopropylacrylamide group in the polymer. The quantitative extraction of class b metal ions as well as the liquid–liquid extraction of metal ions with monoaza-tetrathioether molecule was performed.  相似文献   

17.
IR, UV-vis, and EPR spectroelectrochemistry at variable temperatures and in different solvents were applied to investigate in situ the formation of electroactive molecular chains with a nonbridged Os-Os backbone, in particular, the polymer [Os(0)(bpy)(CO)(2)](n) (bpy = 2,2'-bipyridine), from a mononuclear Os(II) carbonyl precursor, [Os(II)(bpy)(CO)(2)Cl(2)]. The one-electron-reduced form, [Os(II)(bpy(.)(-))(CO)(2)Cl(2)](-), has been characterized spectroscopically at low temperatures. This radical anion is the key intermediate in the electrochemical propagation process responsible for the metal-metal bond formation. Unambiguous spectroscopic evidence has been gained also for the formation of [[Os(0)(bpy(*)(-))(CO)(2)](-)](n), the electron-rich electrocatalyst of CO(2) reduction. The polymer species are fairly well soluble in butyronitrile, which is important for their potential utilization in nanoscience, for example, as conducting molecular wires. We have also shown that complete solubility is accomplished for the monocarbonyl-acetonitrile derivative of the polymer, [Os(0)(bpy)(CO)(MeCN)(2)Cl](n).  相似文献   

18.
The metal complexes of N, N′‐bis (o‐hydroxy acetophenone) propylene diamine (HPPn) Schiff base were supported on cross‐linked polystyrene beads. The complexation of iron(III), copper(II), and zinc(II) ions on polymer‐anchored HPPn Schiff base was 83.4, 85.7, and 84.5 wt%, respectively, whereas the complexation of these metal ions on unsupported HPPn Schiff base was 82.3, 84.5, and 83.9 wt%. The iron(III) complexes of HPPn Schiff base were octahedral in geometry, whereas copper(II) and zinc(II) ions complexes were square planar and tetrahedral. Complexation of metal ions increased the thermal stability of HPPn Schiff base. Catalytic activity of metal complexes was tested by studying the oxidation of phenol and epoxidation of cyclohexene in the presence of hydrogen peroxide. The polymer‐supported HPPn Schiff base complexes of iron(III) ions showed 73.0 wt% conversion of phenol and 90.6 wt% conversion of cyclohexene at a molar ratio of 1:1:1 of substrate to catalyst and hydrogen peroxide, but unsupported complexes of iron(III) ions showed 63.8 wt% conversion for phenol and 83.2 wt% conversion for cyclohexene. The product selectivity for catechol (CTL) and epoxy cyclohexane (ECH) was 93.1 and 98.3 wt%, respectively with supported HPPn Schiff base complexes of iron(III) ions but was lower with HPPn Schiff base complexes of copper(II) and zinc(II) ions. Activation energy for the epoxidation of cyclohexene and phenol conversion with unsupported HPPn Schiff base complexes of iron(III) ions was 16.6 kJ mol?1 and 21.2 kJ mol?1, respectively, but was lower with supported complexes of iron(III) ions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
Ruthenium tris-bipyridine dyes containing oligophenyleneethynylene (OPE) rigid rod linker groups ([Ru(bpy)3]2+, [Ru(bpy)2bpy-E-Ipa]2+, [Ru(bpy)2bpy-E-Ph-E-Ipa]2+, and [Ru(bpy)2bpy-E-Bco-E-Ipa]2+, where bpy = 2,2'-bipyridine, E = ethynylene, Ph = p-phenylene, Bco = bicyclo[2.2.2]octylene, and Ipa = isophthalic acid) have been investigated using DFT and TD-DFT calculations to elucidate the influence of the rigid rod on their optoelectronic properties. Experimentally observed differences in the optical absorption for the different complexes are discussed on the basis of TD-DFT simulated absorption spectra. A comparison of the calculated optoelectronic properties of [Ru(bpy)2bpy-E-Ph-E-Ipa]2+ in different chemical environments, that is, in different solvents and with or without counter ions, suggests that both the absorption spectra and the redox properties of the dyes with OPE rods are sensitive to the environment. The calculations show that spurious low-energy charge-transfer excitations present in the TD-DFT calculations of the extended systems in vacuum are removed when the environment is included in the calculations.  相似文献   

20.
Transmission electron microscopy (TEM) and dynamic light scattering (DLS) studies on acetonitrile solutions of the polymer {[(vpy)2-vpyRe(CO)3bpy] CF3SO3}200 demonstrated that the Re(I) polymer molecules aggregate to form spherical micelles of radius R = 156 nm. Coordination of Cu(II) species to the Re (I) polymer causes a decrease in the micelle radius and a distortion from the spherical shape. Besides, the coordination of Cu(II) species to the {[(vpy)2-vpyRe(CO)3bpy] CF3SO3}200 polymer produces the quenching of the metal to ligand charge transfer (MLCT) excited state by energy transfer processes that are more efficient than those in the quenching of the monomer pyRe(CO)3bpy+ luminescence by Cu(II). Moreover, the kinetics of the quenching by Cu(II) do not follow a Stern-Volmer behavior. Conversely, the quenching of the MLCT luminescence of the Re(I) polymer by the sacrificial electron donor 2,2',2' '-nitrilotriethanol, TEOA, follows a Stern-Volmer kinetics. A comparison is made between the quenching by CuX2 (X = Cl or CF3SO3) and TEOA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号