首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The N—H and O—H bond dissociation energies in 4-hydroxydiphenylamine Ph—NH—C6H4—OH (D NH= 353.4, D OH=339.3 kJ mol–1) and its semiquinone radicals D NH(Ph—NH—C6H4—O·) = 273.6, D OH(Ph—N·—C6H4—OH) = 259.5 kJ mol–1 were first estimated using the parabolic model and experimental data (rate constants) on two elementary reactions with participation of N-phenyl-1,4-benzoquinonemonoimine (2). One of the reactions, namely, that of 2 with aromatic amines, was studied in this work using a specially developed method.  相似文献   

2.
Syntheses and single crystal X-ray structures of an open triruthenium acyl carbonyl cluster [(C6H5)2SbRu3(COC6H5)(CO)10] (1) and a simple triruthenium Ru3(CO)9[(C6H5)2PCH2P(C6H5)2]Sb(C6H5)3 (2) are reported. Formation of compound (1) at room temperature from [Ru3(CO)12] and [Sb(C6H5)3] is unique, a similar reaction with Ru3(CO)10[(C6H5)2PCH2P(C6H5)2] under identical conditions results in compound (2), with Sb(C6H5)3 occupying an equatorial site. IR, 1H, 13C NMR spectra of the compounds are reported. The X-ray crystal structure of (1) consist of 2 crystallography distinct molecules and shows Ru–Sb distances in the range: 2.6361(6)–2.6273(7) Å and Ru–Ru distances in the range: 2.8236(7)–2.9855(7) Å. Ru–O distances in the bridging carbonyl are: 2.137(4), 2.158(4) Å. The Sb–Ru–Ru angles in the two molecules of the asymmetric unit are in the range of 73.78(2)–77.52° indicating the puckered nature. Compound (2) has bond parameters comparable to those of Ru3(CO)10[(C6H5)2PCH2P(C6H5)2]. The present study shows for the first time that the cleaving of Sb–C bond at room temperature is possible under non-ionic conditions, though there have been many instances of P–C and As–C bond cleavages reported previously.  相似文献   

3.
Ag+-assisted dechlorination of blue cis-trans-cis Ru(R-aai-R′)2Cl2 followed by the reaction with chloranilic acid (H2CA) in the presence of Et3N, gives a neutral mononuclear violet complex [Ru(R-aai-R′)2(CA)]. [R-aai-R′=p-R-C6H4—N=N—C3H2—NN, abbreviated as an N,N′ chelator where N(imidazole) and N(azo) represent N and N′, respectively; R = H (a), OMe (b), NO2 (c) and R′= Me (4), Et(5), Bz(6)]. All the complexes exhibit strong intense MLCT transitions in the visible region and weak broad bands at higher wavelength (>700 nm). Visible transitions (580–595 nm) show a negative solvatochromic effect. The cyclic voltammograms show two quasireversible to irreversible couples positive to SCE and are due to CA/CA2− (1.2–1.35 V) and Ru(III)/Ru(II) (1.6–1.8 V) redox processes. Three couples, negative to SCE, are assigned to CA2−/CA3− (−0.2 to −0.3 V), and azo reductions (−0.5 to −0.7, −0.8 to −0.9 V) of the chelated R-aai-R′.  相似文献   

4.
The X-ray structural study of the reaction product of equimolar amounts of [Au3Cu2(C2Ph)6]. [{Au(C2Ph)} n ], and [Ag(C2Ph)} n ] revealed two bimetallic anionic [N(PPh3)2] + [Au3Ag2(C2Ph)6] and [N(PPh3)2]+[Au3Cu2 (C2 Pg)6] — clusters co-crystallized in one asymmetric unit. Each cluster has trigonal bipyramidal geometry with three gold atoms occupying equatorial planes and two silver or copper atoms in the apical positions. Our earlier conclusion based upon spectroscopic characterization describing the product of be above reaction as trimetallic cluster containing three coinage-metals with an overall composition [Au3CuAg(C2Ph)6], was erroneous.Presented at the 210th ACS Meeting, August 19–24, 1995, Chicago, Illinois.  相似文献   

5.
Two cyano-bridged assemblies, [FeIII(salpn)]2[FeII(CN)5NO] (1) and [FeIII (salpn)]2[NiII(CN)4] (2) [salpn = N, N-1,2-propylenebis(salicylideneiminato)dianion], have been prepared and structurally and magnetically characterized. In each complex, [Fe(CN)5NO]2– or [Ni(CN)4]2– coordinates with four [Fe(salpn)]+ cations using four co-planar CN ligands, whereas each [Fe(salpn)]+ links two [Fe(CN)5NO]2– or [Ni(CN)4]2– ions in the trans form, which results in a two-dimensional (2D) network consisting of pillow-like octanuclear [—MII—CN—FeIII—NC—]4 units (M = Fe or Ni). In complex (1), the NO group of [Fe(CN)5NO]2– remains monodentate and the bond angle of FeII—N—O is 180.0°. The variable temperature magnetic susceptibilities, measured in the 5–300 K range, show weak intralayer antiferromagnetic interactions in both complexes with the intramolecular iron(III)iron(III) exchange integrals of –0.017 cm–1 for (1) and –0.020 cm–1 for (2), respectively.  相似文献   

6.
Yuan  Ai-Hua  Lu  Lu-De  Shen  Xiao-Ping  Chen  Li-Zhuang  Yu  Kai-Bei 《Transition Metal Chemistry》2003,28(2):163-167
A cyanide-bridged FeIII–FeII mixed-valence assembly, [FeIII(salen)]2[FeII(CN)5NO] [salen = N,N-ethylenebis(salicylideneiminato)dianion], prepared by slow diffusion of an aqueous solution of Na2[Fe(CN)5NO] · 2H2O and a MeOH solution of [Fe(salen)NO3] in an H tube, has been characterized by X-ray structure analysis, i.r. spectra and magnetic measurements. The product assumes a two-dimensional network structure consisting of pillow-like octanuclear [—FeII—CN—FeIII—NC—]4 units with dimensions: FeII—C = 1.942(7) Å, C—N = 1.139(9) Å, FeIII—N = 2.173(6) Å, FeII—C—N = 178.0(6)°, FeIII—N—C = 163.4(6)°. The FeII—N—O bond angle is linear (180.0°). The variable temperature magnetic susceptibility, measured in the 4.8–300 K range, indicates the presence of a weak intralayer antiferromagnetic interaction and gives an FeIII–FeIII exchange integral of –0.033 cm–1.  相似文献   

7.
The two-step synthesis of [η51-C5Me4(CH2)3O]TiCl2 from [C5Me4(CH2)3OMe]TiCl3 is investigated through molecular orbital calculations. Results of ab initio, restricted Hartree–Fock calculations at the 6-311G(d) basis set level are reported for the reactants, products, and an intermediate, [C5Me4(CH2)3OMe]TiCl2(CHPPh3). These results provide insight into the mechanism of the second reaction, which is found to be a charge-controlled intermolecular nucleophilic attack. The nature of the titanium–ylid bond in the intermediate complex is also reported.  相似文献   

8.
A study was carried out on the nitration of substituted benzo[b]thieno[2,3-c]pyridines. Depending on the conditions, either one nitro group is introduced at C(6) or two nitro groups are introduced at C(6) and C(8). If C(6) is blocked, a mixture of products is formed.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 5, pp. 706–709, May, 1993.  相似文献   

9.
N(1)-Alkyl-3-morpholino-1,2,4-triazinium salts and N(1)-alkyl-3-pyrrolidino-1,2,4-triazinium salts were synthesized. The structures of these salts were established by 13C NMR spectroscopy. 1,2,4-Triazinium cations add indoles at C(5) and C(6) thereby displaying properties characteristic for 1,4-diazinium salts.For communication 5, see [1].Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 11, pp. 1535–1543, November, 1986.  相似文献   

10.
Pulse radiolysis transient UV–visible absorption spectroscopy was used to study the UV–visible absorption spectrum (225–575 nm) of the phenyl radical, C6H5(), and kinetics of its reaction with NO. Phenyl radicals have a strong broad featureless absorption in the region of 225–340 nm. In the presence of NO phenyl radicals are converted into nitrosobenzene. The phenyl radical spectrum was measured relative to that of nitrosobenzene. Based upon σ(C6H5NO)270 nm=3.82×10−17 cm2 molecule−1 we derive an absorption cross-section for phenyl radicals at 250 nm, σ(C6H5())250 nm=(2.75±0.58)×10−17 cm2 molecule−1. At 295 K in 200–1000 mbar of Ar diluent k(C6H5()+NO)=(2.09±0.15)×10−11 cm3 molecule−1 s−1.  相似文献   

11.
Reduction of the binuclear PdII complexes Pd2(OCOR)2(o-CH2C6H4—NO)2 (1) and Pd2(OCOR)2(o-PhN—C6H4—NO)2 (2) (where R = Me, CF3, But, or Ph) by sodium borohydride, an ethanolic solution of KOH, or molecular hydrogen was examined. The first stage of reduction was demonstrated to afford metallic palladium and aromatic amines, viz., o-toluidine o-Me—C6H4—NH2 from complex 1 and aniline Ph—NH2 from complex 2. The reactions with molecular hydrogen involve deeper stages to yield cyclic ketones (o-methylcyclohexanone and cyclohexanone) and then cycloalkanes (methylcyclohexane and cyclohexane, respectively). The latter reactions are accompanied by elimination of N2. The mechanism of reduction of complexes 1 and 2 with molecular hydrogen was proposed.  相似文献   

12.
Summary The kinetics and mechanism of the system: [FeL(OH)]2–n + 5 CN [Fe(CN)5(OH)]3– + Ln–, where L=DTPA or HEDTA, have been investigated at pH= 10.5±0.2, I=0.25 M and t=25±0.1 C.As in the reaction of [FeEDTA(OH)]2–, the formation of [Fe(CN)5(OH)]3– through the formation of mixed ligand complex intermediates of the type [FeL(OH)(CN)x]2–n–x, is proposed. The reactions were found to consist of three observable stages. The first involves the formation of [Fe(CN)5(OH)]3–, the second is the conversion of [Fe(CN)5(OH)]3– into [Fe(CN)6]3– and the third is the reduction of [Fe(CN)6]3– to [Fe(CN)6]4– by oxidation of Ln– The first reaction exhibits a variable order dependence on the concentration of cyanide, ranging from one at high cyanide concentration to three at low concentration. The transition between [FeL(OH)]2–n and [Fe(CN)5(OH)]3– is kinetically controlled by the presence of four cyanide ions around the central iron atom in the rate determining step. The second reaction shows first order dependence on the concentration of [Fe(CN)5(OH)]3– as well as on cyanide, while the third reaction follows overall second order kinetics; first order each in [Fe(CN)6]3– and Ln–, released in the reaction. The reaction rate is highly dependent on hydroxide ion concentration.The reverse reaction between [Fe(CN)5(OH)]3– and Ln– showed an inverse first order dependence on cyanide concentration along with first order dependence each on [Fe(CN)5– (OH)]3– and Ln–. A five step mechanism is proposed for the first stage of the above two systems.  相似文献   

13.
The potential functions of internal rotation about the C2 sp—S bonds for C6H5XCY3 species (X = SO or SO2, Y = H or F) have been obtained at the MP2 (full)/6-31+G(d) level of ab initio theory. It is found that the spatial structures with the plane of C2 sp—S—C3 sp bonds, which is near perpendicular to the benzene ring plane, are the energy-favourable conformations. The values of the rotational barrier about the C2 sp—S bond are equal to (kJ/mole): 21.2 (C6H5SOCH3), 29.0 (C6H5SOCF3), 20.4 (C6H5SO2CH3), and 28.2 (C6H5SO2CF3). On the basis of the Natural Bond Orbital (NBO) analysis results, it has been revealed that the double S=O bond is a strongly polarized covalent -bond, whereas -bond electrons practically are localized on the oxygen atom. The S=O bond order for aromatic sulfoxides and sulphones is mainly caused by hyperconjugational interactions according to the LP(O) *(S—Cipso) and LP(O) *(S—C Y ) mechanisms. In sulphones there is also the additional mechanism of hyperconjugational interactions such as LP(O1 *(S—O2) and LP(O2) *(S—O1). With the replacement of one hydrogen atom on the —XCY3 group, the charge loss of the unsubstituted benzene molecule increases: —SOCH3 < —SO2CH3 < — SOCF3 < —SO2CF3. The substitution of the —CH3 group for the —CF3 group weakly influences the charge value on the sulfur atom but effects the acceptor characteristics of the substituent to a greater extent than the variation of the sulfur atom coordination.  相似文献   

14.
A comprehensive calculations were carried out to get a deep insight into the ground- and excited-state electronic structures and the spectroscopic properties for a series of [Pt(4-X–trpy)CCC6H4R]+ complexes (trpy = 2,2′,6′,2″-terpyridine; X = H, R = NO2 (1), Cl (2), C6H5 (3) and CH3 (4); R = Cl, X = CH3 (5) and C6H5 (6)). MP2 (second-order Møller–Plesset perturbation) and CIS (single-excitation configuration interaction) methods were employed to optimize the structures of 1–6 in the ground and excited states, respectively. The investigation showed that substituted phenylacetylide and trpy ligands only give rise to a small variation in geometrical structures but lead to a sizable difference in the electronic structures for 1–6 in the ground and excited states. The introduction of electron-rich groups into the phenylacetylide and/or terpyridyl ligands produces two different low-lying absorptions for 1 and 2–6, i.e., Pt(5d) → π*(trpy) metal-to-ligand charge transfer (MLCT) mixed with π → π*(CCPh) intraligand charge transfer (ILCT) for 1 and Pt(5d)/π(CCPh) → π*(trpy) charge transfer (MLCT and LLCT) for 26. Remarkable electronic resonance on the whole Pt–CCPh–NO2 moiety for 1 may be responsible for the difference. Solvatochromism calculation revealed that only LLCT/MLCT transitions showed the solvent dependence, consistent with the experimental observations.  相似文献   

15.
11 and 12 molar reactions of tin(IV) chloride with theSchiff bases, HO–C6H4CHNROH [where R=–(CH2)2–, –CH2–, –CH(CH3)–, –(CH2)3–, and –CH(C2H5)CH2–] have been studied in different stoichiometric ratios and derivatives of the type SnCl4(SBH2) and SnCl4(SBH2)2 (whereSBH2 represents theSchiff base molecule) have been isolated. These have been characterised by elemental analysis, conductivity measurements and I.R. spectral studies.  相似文献   

16.
Two new phenol based macroacyclic Schiff base ligands, 2,6-bis({N-[2-(phenylselenato)ethyl]}benzimidoyl)-4-methylphenol (bpebmpH, 1) and 2,6-bis({N-[3-(phenylselenato)propyl]}benzimidoyl)-4-methylphenol (bppbmpH, 2) of the Se2N2O type have been prepared by the condensation of 4-methyl-2,6-dibenzoylphenol (mdbpH) with the appropriate (for specific reactions) phenylselenato(alkyl)amine. These ligands with Cu(II) acetate monohydrate in a 2:1 molar ratio in methanol form complexes of the composition [(C6H2(O)(CH3){(C6H5)CN(CH2)nSe(C6H5)}{(C6H5)CO}2Cu] (3 (n = 2), 4 (n = 3)) with the loss of phenylselenato(alkyl)amine and acetic acid. In both these complexes, one arm of the ligand molecule undergoes hydrolysis, and links with Cu(II) in a bidentate (NO) fashion, as confirmed by single crystal X-ray crystallography of complex 3. The selenium atoms do not form part of the copper(II) distorted square planar coordination sphere which has a trans-CuN2O2 core. The average Cu–N and Cu–O distances are, respectively, 1.973(3) and 1.898(2) Å. The N–Cu–N and O–Cu–O angles are, respectively, 167.4(11)° and 164.5(12)°. The compounds 1–4 have been characterized by elemental analysis, conductivity measurements, mass spectrometry, IR, electronic, 1H and 77Se{1H} NMR spectroscopy and cyclic voltammetry. The interaction of complex 3 with calf thymus DNA has been investigated by a spectrophotometric method and cyclic voltammetry.  相似文献   

17.
Specific magnetic susceptibilities (s) of several newly synthesized chelates of some of the lanthanons [La(III), Pr(III) and Nd(III)] are reported. These derivatives are of the general type,Ln(O-i-C3H7)3–n (C6H5CHNRO) n [where,Ln=La(III), Pr(III) or Nd(III);n=1 or 2 and R=CH2CH2, CH2CHCH3 or C6H4] and have been prepared by the reaction of the alkoxides of the lanthanons withSchiff bases such as benzylidene-2-hydroxyethylamine (C6H5CHNCH2CH2OH), benzylidene-2-hydroxy-n-propylamine (C6H5CHNCH2CHOHCH3) and benzylidene-o-aminophenol (C6H5CHNC6H4OH) in different molar relations in dry benzene.The resulting crystalline derivatives are non-volatile, light to deep yellow or blackish in colour. These tend to polymerize on keeping as shown by their insoluble nature and higher melting points, the polymerisation possibly occurring by the intermolecular coordination through oxygen atoms as reported earlier1.UsingGouy method2, the bis-isopropoxy mono-Schiff base and mono-isopropoxy bis-Schiff base complexes of La(III) have been shown to be diamagnetic, with s values being in the range of –0.32 to –0.45×10–6 and –0.39 to –0.55×10–6 c.g.s. units at 305 K respectively.In the remaining derivatives, Pr(O-i-C3H7)3–n (C6H5CH NRO) n and Nd(O-i-C3H7)3–n (C6H5CHNRO) n (where,n=1 or 2 and R=CH2CH2, CH2CHCH3 or C6H4) the magnetic moment values range between 3.25 to 3.32 and 3.30 to 3.33 B respectively indicating their paramagnetic nature.  相似文献   

18.
Four different dimethyltin(IV) complexes of Schiff bases derived from 2-amino-3-hydroxypyridine and different substituted salicylaldehydes have been synthesized. The compounds, with the general formula [Me2Sn(2-OArCHNC5H3NO)], where Ar = –C6H3(5-CH3) [Me2SnL1], –C6H3(5-NO2) [Me2SnL2], –C6H2(3,5-Cl2) [Me2SnL3], and –C6H2(3,5-I2) [Me2SnL4], were characterized by IR, NMR (1H and 13C), mass spectroscopy and elemental analysis. Me2SnL3 was also characterized by X-ray diffraction analysis and shows a fivefold C2NO2 coordination with distorted square pyramidal geometry. H3C–Sn–CH3 angles in the complexes were calculated using Lockhart's equations with the 1J(117/119Sn–13C) and 2J(117/119Sn–1H) values (from the 1H-NMR and 13C-NMR spectra). The in vitro antibacterial and antifungal activities of dimethyltin(IV) complexes were also investigated.  相似文献   

19.
Conclusions Karatavic acid has been isolated from the resin of the roots ofFerula karatavica Rgl. et Schmalh; this is an ether of umbelliferone and a hydroxy acid C15H24O3 probably having the humulane type of hydrocarbon skeleton. Two possible structural formulas—(I) and (II)—have been proposed for karatavic acid.Khimiya Prirodnykh Soedinenii, Vol. 4, No. 5, pp. 283–287, 1968  相似文献   

20.
Two simple diphosphonates, CH6P2 O6(MDP) and C2 H8 P2 O7 (HEDP),have been irradiated with neutrons to produce the corresponding 32P-labeled compounds. After irradiation for 0.5–5 hours in a thermalneutron flux of 4.2 . 1016 n . m —2 s—1 the irradiated compounds were dissolved and fractionated using a SephadexG10 column. The separated fractions were identified using planar paper chromatographyand autoradiography. The labeling yield was ca 35% for each of the compounds,and the specific activity attainable ranged up to 4.8 GBq . mol —1 . For practical applications, the labeled diphosphonates have to bepurified further.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号