首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 8 毫秒
1.
基于电沉积和层层自组装技术,提出了一种新的生物分子固定化方法,研制成一种高灵敏电位型乙肝表面抗原免疫传感器。利用L-半胱胺酸(LCys)的双官能团结合双层纳米金,从而通过比表面积大,生物相容性好的纳米金胶吸附大量抗体,同时用聚乙烯醇缩丁醛(PVB)薄膜的笼效应把乙肝表面抗体(HBsAb)和纳米金固定在玻碳电极上,从而制得了高灵敏度、高稳定性的电位型免疫传感器。采用循环伏安法(CV)对电极的层层自组装过程进行了考察,并对该免疫传感器的性能进行了详细的研究。该免疫传感器线性范围是8.5~256.0ng/mL,线性相关系数为0.9978,灵敏度为89.0,检出限为3.1ng/mL。已用于病人的血清样品分析。  相似文献   

2.
The signal amplification for analytical purposes has considerable potential in detecting trace levels of analytes for clinical, security or environmental applications. In the present report a strategy based on a sandwich type immunoassay system was designed for the detection of hepatitis B surface antigen which exploits the specific affinity interaction between streptavidin and biotin recognition systems. The method involves the specific coupling of multi-functionalized gold nanoparticles (bearing biotin and luminol molecules) to the streptavidin modified by secondary antibody. The chemiluminescent signal is produced by the gold nanoparticles in the presence of HAuCl4 as catalyst and hydrogen peroxide as oxidant. The immunosensor was able to detect hepatitis B surface antigen in the linear concentration range from 1.7 to 1920 pg mL−1 and the detection limit of 0.358 pg mL−1, at signal/noise = 3.  相似文献   

3.
《Electroanalysis》2005,17(2):155-161
A highly sensitive immunosensor based on immobilization of hepatitis B surface antibody (HBsAb) on platinum electrode (Pt) modified silver colloids and polyvinyl butyral (PVB) as matrixes has been developed for potentiometric immunoanalysis to detect hepatitis B surface antigen (HBsAg) in this study. HBsAb molecules were immobilized successfully on nanometer‐sized silver colloid particles associated with polyvinyl butyral on a platinum electrode surface. The modification procedure was electrochemically monitored by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The HBsAb‐silver‐PVB‐modified electrode exhibited direct electrochemical behavior toward HBsAg. The factors influencing the performance of the resulting immunosensor were studied in detail. More than 94.7% of the results of human serum samples obtained by this method were in agreement with those obtained by enzyme‐linked immunosorbent assays (ELISAs). The resulting immunosensor exhibited a sigmoid curve with log HBsAg concentration, high sensitivity (39.8 mV/decade), wide linear range from 16.0 to 800 ng mL?1 with a detection limit of 3.6 ng mL?1, fast potentiometric response (<3 min) and long‐term stability (>4 months). The response mechanism of the immunosensors was also studied with AC impedance techniques.  相似文献   

4.
On the basis of copper-enhanced gold nanoparticle tags as an amplification approach, we introduced, in this paper, magnetic nanoparticles for further improving performance of electrochemical immunoassay by anodic stripping voltammetry (ASV) at a glassy-carbon electrode. Due to the use of antibody-immobilized magnetic nanoparticles, the immunoreaction between antibody and antigen takes place in a homogeneous bulk solution phase. Compared with traditional solid interface reaction, the proposed strategy can provide some advantages such as easy of separation, shorter analytical time, wider linear range, and lower detection limit. It was also successfully applied to HBsAg determination in a linear range of 0.1-1500 ng mL−1 with a detection limit of 87 pg mL−1. The proposed analytical strategy holds good selectivity, sensitivity and repeatability and also great promise for the extended application in the fields of clinical diagnosis, bio-affinity assay and environmental monitoring.  相似文献   

5.
The interaction of pres1 region of hepatitis B virus B-cell epitope antigen with specific hepatitis B neutralizing monoclonal antibody was examined by docking study. We modelled the 3D complex structure of B-cell epitope antigen residues CTTPAQGNSMFPSCCCTKPTDGNCY by homology modelling and docked it with the crystal structure of monoclonal antibody specific for the pres1 region of the hepatitis B virus. At the optimized docked conformation, the interactions between the amino acids of antigen and antibody were examined. It is found that the docked complex is stabilized by 59.3 kcal/mol. The stability of the docked antigen-antibody complex is due to hydrogen bonding and van der Waals interactions. The amino acids of the antigen and antibody responsible for the interaction were identified.  相似文献   

6.
Summary To find the factors responsible for the broadening of the recombinant-hepatitis B surface-antigen peak in size-exclusion chromatography, the purified material was fractionated on preparative scale followed by multiple analysis of the separated fractions. The results from chromatographic analysis suggested the presence of large particle aggregates, probably tubular structures which, however, were not detected by electron microscopy. The antigen particles ranged from 16 to 32 nm in all the fractions, except two last fractions consisting of 16–24 nm particles. The relation ELISA/Lowry increased with increasing the fraction number, being a maximum in the fraction corresponding to the maximum of the chromatographic peak. Probably, the particles which are variable in size differ from each other with respect to the efficiency of protein assembly. Fractions collected in different regions of the peak were adsorbed on alum and injected in mice. The high antibody levels were produced without significant differences in immunogenicity between samples. Presented at the 21st ISC held in Stuttgart, Germany, 15th–20th September, 1996.  相似文献   

7.
The excellent direct electron transfer (DET) of enzyme labeled to antibody immobilized in designer organically modified silicate (ormosil) sol–gel was achieved at an electrode, which was used to construct a novel reagentless immunosensor for antigen determination. The synthesized ormosil architecture provided a hydrophilic interface for retaining the activity of immobilized enzyme labeled immunocomponent. The proposed immunosensor for carcinoembryonic antigen (CEA) prepared by immobilizing horseradish peroxidase-labeled CEA antibody (HRP-anti-CEA) in the architecture showed a surface-controlled electrode process attributed to the DET between electrode and HRP with a rate constant of 5.94 ± 0.40 s−1. The formation of immunocomplex upon incubation in CEA or sample solution led to block of DET and linearly decrease in voltammetric response over CEA concentration ranging from 0.5 to 3.0 and 3.0 to 120 ng ml−1. The limit of detection for CEA was 0.4 ng ml−1. The immunosensor showed good accuracy and acceptable storage stability, precision and reproducibility. The proposed method was simple, low-cost and potentially attractive for clinical immunoassays.  相似文献   

8.
A sensitive sandwich immunoassay for the determination of Hepatitis B surface antigen (HBs) was developed, using a cascade system of Limulus amebocyte lysate as a signal amplification system. Lipopolysaccharide (LPS) was conjugated to anti-HBs antibody. Anti-HBs antibody was adsorbed to polystyrene beads. First, HBs were reacted to solid phase anti-HBs antibody (a-HBs). After the reaction, the beads were rinsed, and were then reacted with a-HBs-LPS. Then, LPS activity specifically bound to the beads was measured. HBs could be measured in the range of 10(-10)-10(-12) g/mL.  相似文献   

9.
Caifeng Ding  Hui Li  Jin-Ming Lin 《Talanta》2010,80(3):1385-1478
We describe herein the combination of electrochemical immunoassay using nanoporous gold (NPG) electrode with horseradish peroxidase (HRP) labeled secondary antibody-gold nanoparticles (AuNPs) bioconjugates for highly sensitive detection of protein in serum. The electroactive product of o-phenylenediamine (OPD) oxidized with H2O2 catalyzed by HRP was reduced in the Britton-Robinson (BR) buffer and the peak current of which was used to determine the concentration of antigen (Ag) in the analyte. The active surface area of NPG electrode was larger than that of a bare flat one. The presence of AuNPs enhanced the immobilized amount of HRP labeled antibody (Ab), which improved the sensitivity of the immunoassay when used as the secondary antibodies. As a result of these two combined effects, the sensitivity of the immunoassay for the determination of target protein was increased significantly. Using hepatitis B surface antigen (HBsAg) as a model, we demonstrate a dose response in the range of 0.01-1.0 ng/mL with a detection limit of 2.3 pg/mL. Analytical results of several human serum samples obtained using the developing technique are in satisfactory agreement with those given by enzyme-linked immune-absorbent assays (ELISA). In addition, the technique was about 100 times more sensitive in the detection of HBsAg than ELISA. All these demonstrated the feasibility of the present immunoassay method for clinical diagnosis.  相似文献   

10.
An amperometric immunosensor has been developed for sensitive determination of hepatitis B surface antigen as a model protein. A glassy carbon electrode was modified with an assembly of positively charged poly(allylamine)-branched ferrocene (PAA-Fc) and negatively charged gold nanoparticles (Au NPs). The formation of PAA-Fc effectively avoids the leakage of Fc, retains its electrochemical activity, and enhances the conductivity of the composite. The adsorption of Au NPs onto the PAA-Fc matrix provides sites for the immobilization of the antigen and a favorable micro-environment to maintain its activity. The morphologies and electrochemistry of the sensing film were investigated via scanning electron microscopy, electrochemical impedance spectroscopy, and cyclic voltammetry. Factors influencing the performance of the immunosensor were studied in detail. The concentration of the antigen can be quantitated (by measuring the decrease of the amperometric response resulting from the specific binding between antigen and antibody) in the range between 0.1 and 150?ng?mL?C1, with a detection limit of 40?pg?mL?C1 (S/N = 3). The method is economical, efficient, and potentially attractive for clinical immunoassays.
Figure
A novel and sensitive amperometric immunosensor based on the assembly of biocompatible positively charged poly(allylamine)-branched ferrocene and negatively charged Au nanoparticles onto a glassy carbon electrode has been developed for sensitive determination of hepatitis B surface antigen as a model protein.  相似文献   

11.
A sensitive electrochemical immunosensor was developed for detecting fumonisin B1 (FB1) in corn using the single‐walled carbon nanotubes/chitosan. The detection mechanism of immunosensor was based on an indirect competitive binding to a fixed amount of anti‐FB1 between free FB1 and FB1‐bovine serum albumin, which was conjugated on covalently functionalized nanotubes/chitosan laid on the glass carbon electrode. The anti‐rabbit immunoglobulin G secondary antibody labeled with alkaline phosphatase was then bound to the electrode surface through reactisubstrate α‐naphthyl phosphate, which produced electrochemical signal. Under optimized conditions, this method could detect FB1 from 0.01 to 1000 ng mL?1 with a detection limit of 2 pg mL?1. This is well below the detection limit required from European Union legislation, 2–4 mg L?1. Moreover, good recoveries were obtained for the detection of spiked corn samples and actual corn samples. As the method has good sensitivity and recovery for detecting FB1, it is a practical detection method.  相似文献   

12.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号