首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
具有高灵敏度,高选择性特点的表面增强拉曼散射(SERS)与免疫学中的特异吸附机理相结合形成的SERS标记免疫检测技术具有很大的研究及应用价值。文章重点研究了关于SERS标记免疫检测的再生性问题,力求增加此技术的循环利用价值。实验采用甘氨酸-HCl生物缓冲体系对三明治结构(固相抗体-抗原-标记免疫金溶胶)进行洗脱,通过酸碱度的改变,促使抗体抗原复合物发生解离。实验结果表明,洗脱24 h后,固相抗体上连接的抗原及标记免疫溶胶能得到很好的去除,去除后再次组装三明治结构,仍能通过对标记分子的识别进行SERS标记免疫检测。在此基础上还研究了此方法的稳定性与重复使用次数,发现其具有较好的稳定性,重复使用次数可达10次左右。  相似文献   

2.
拉曼光谱技术具有多组分同时探测、分析周期短和非接触等特点,被应用于多个领域,但是由于较低的探测灵敏度,限制了拉曼光谱技术的发展。针对提高拉曼光谱技术对气体探测灵敏度问题,本文设计并搭建了一套基于空芯光纤气体拉曼光谱增强系统,开展了空芯光纤拉曼光谱系统和后向散射拉曼光谱实验系统对比实验研究。实验结果表明,空芯光纤对信号、背景和噪声都具有放大效果,以空气中氮气和氧气为探测物质,与后向拉曼光谱信号相比,在相同探测时间情况下,信号强度增强60倍以上,信噪比增强约6倍;在相同探测强度情况下,探测时间仅为后向散射的1/60,噪声为后向散射拉曼系统的1/2。  相似文献   

3.
SERS在标记免疫检测中的应用   总被引:4,自引:3,他引:1  
标记免疫分析 ,是将多种标记示踪技术的高度灵敏性和医学免疫抗原抗体反应的高度特异性相结合的产物 ,因此具有极良好的微量分析效果 ,是生物活性物质分析方法上的新领域。2 0世纪 70年代中后期 ,表面增强拉曼散射 (SERS)效应的发现与证实 ,给拉曼光谱的研究应用注入了新的活力 ,特别是在生物医学领域 ,SERS被大量应用。文章综述了SERS应用于标记免疫分析的研究状况 ,将已有的研究成果进行了系统阐述和归纳 ,并简要介绍本实验室在这方面做的一些工作  相似文献   

4.
采用高灵敏度的表面增强拉曼光谱(SERS)技术,以具有强SERS信号的金纳米粒子标记抗体,以此SERS标记免疫金溶胶为探针,结合扫描电镜技术,研究免疫球蛋白羊抗小鼠IgG分子与银基底的相互作用。我们发现,羊抗小鼠IgG分子可直接与银基底通过疏水作用或形成Ag-S键而牢固结合。为消除这种非特性吸附,本文以小牛血清白蛋白(BSA)封闭银基底,取得了较好的效果。  相似文献   

5.
表面增强拉曼散射(SERS)技术克服了拉曼光谱灵敏度低的缺点,可以获得常规拉曼光谱不易得到的分子结构信息,成为分子甚至单一分子痕量检测的一个重要手段,在生命科学、分析化学等领域得到了广泛的应用。SERS基底是SERS检测中的核心部件,只有少量特殊处理的贵金属才具有较强SERS效应,同时这些传统SERS基底一般都是一次性使用,这给实际使用造成资源的浪费。在简要介绍SERS光谱发展的基础上,重点介绍了近期在可循环SERS基底的制备和应用作一述评,并对可循环SERS基底的研究和发展做了展望。  相似文献   

6.
表面增强拉曼散射光谱的应用进展   总被引:12,自引:6,他引:6  
表面增强拉曼光谱是一种非常有效的探测界面特性和分子间相互作用、表征表面分子吸附行为和分子结构的工具。已成为灵敏度最高的研究界面效应的技术之一,最大范围地应用于研究吸附分子在表面的取向及吸附行为、吸附界面表面状态、生物大分子的界面取向及构型、构象和结构分析;SERS技术也逐渐成为表面科学和电化学领域有力的研究手段,并已在痕量分析乃至单分子检测、化学及工业、环境科学、生物医学体系、纳米材料以及传感器等方面的研究中得到了广泛应用,甚至出现了拉曼技术与其他技术的联用。文章综述了近几年来表面增强拉曼散射作为一种光谱技术在这些应用领域的研究进展以及潜在应用价值;并简单介绍了作者所在实验室的相关工作,特别是富勒烯和碳纳米管材料等领域的一些探讨与研究。  相似文献   

7.
SERS标记免疫金溶胶的影响因素研究   总被引:4,自引:2,他引:2  
将表面增强拉曼光谱(SIERS)的高度灵敏性应用于标记免疫检测,具有很大的意义。在“固相抗体-待测抗原-标记抗体”夹心复合物体系中,以(SERS)标记的金溶胶与抗体结合,制备标记抗体。以芳香族化合物苯硫酚为标记分子,与一定大小粒径的金纳米粒子形成S-Au键,生成带有SERS信号的标记金溶胶。表面带负电荷的标记金溶胶与带有正电荷基团的抗体形成牢固的标记免疫金溶胶。从金纳米粒子粒径的选择、在金溶胶中加入苯硫酚的量及反应时间、抗体对标记金溶胶标记分子的SERS信号的影响进行了研究。  相似文献   

8.
基于表面增强拉曼光谱(SERS)技术在非标记蛋白质研究方面的最新进展。SERS是一个特殊的拉曼光谱现象,对于众多被吸附到粗糙金属表面上的拉曼活性分析物,可以提供增强拉曼信号(通常可以增强几个数量级)。SERS是一个灵敏的,选择性的,和通用的技术,并且可以实时、快速的对数据进行采集。因此,在基于仪器仪表技术和数据分析方法以及SERS在生物体系中的诸多优势,SERS经历了快速的发展阶段。重点介绍几个采用SERS技术对生物体系的代表性研究。某些SERS的生物应用发展比较成熟,并已经可以小范围临床应用,而有些还停留在发展的初始阶段(实验室研究阶段)。讨论了最近发展起来的几种基于SERS技术定量分析的方法, 选择不同SERS活性基底和技术(如生物分子在电极上,胶体纳米粒子,周期性图案结构和基于针尖拉曼技术)对蛋白质进行直接研究。此外,根据SERS指纹信息的变化可以用来研究蛋白质-蛋白质,蛋白质-配体间的相互作用。基于SERS技术对生物分子进行定性和/或定量分析方面显示出了相当大的优势。  相似文献   

9.
一种用表面增强拉曼光谱进行免疫检测的方法   总被引:1,自引:1,他引:0  
一种结合表面增强拉曼(SERS)技术和纳米粒子标记技术,通过银增强来实现免疫检测的方法。将p-巯基苯甲酸(MBA)作为探针,固定在免疫金溶胶粒子表面形成纳米标记,其与被基底捕获抗原分子发生免疫识别。通过银增强技术,在"三明治"结构对探针进行拉曼检测。  相似文献   

10.
在沉积金纳米颗粒的干燥滤纸上进行对硝基苯胺的表面增强拉曼散射(SERS)光谱研究,并与对硝基苯胺在金胶水溶液中的表面增强拉曼散射(SERS)光谱相比,分子拉曼光谱发生了很大变化。同时利用DFT理论计算对硝基苯胺在金胶颗粒上的吸附行为的拉曼光谱。DFT理论模拟计算和FI-Raman实验分析都表明这种变化源于对硝基苯胺的不同吸附方式。SERS和DFT结合研究分子的吸附是一种有效的技术。  相似文献   

11.
拉曼光谱通过记录光与物质作用时频率的改变,进而获得物质分子振动、转动信息,从而实现物质分子结构及其变化的检测。相比于常规生化检测分析方法,拉曼光谱技术具有无损、非标记检测及对检测样品要求低等优点。 拉曼光谱技术已广泛应用于生物医学领域的研究,如人体组织、器官、细胞以及人体体液的各种疾病诊断、检测研究。本文主要综述了拉曼光谱技术在人体精液的研究进展,首先介绍了拉曼光谱技术(包含表面增强拉曼光谱)在法医学领域针对精液整体开展的研究及相关的数据处理方法,然后重点介绍拉曼光谱在男性生殖生育方面的研究,即分别介绍了可客观反映精液质量及男性生殖生育能力的基于精液(精浆)拉曼光谱的定性和定量检测分析;另外,介绍了基于显微拉曼光谱技术开展的单精子水平的精子质量的刻画和评估,以及目前研究初步获得的有望用于优质精子判别的拉曼光谱标记指标,最后展望了拉曼光谱技术在生殖生育领域的应用发展前景。  相似文献   

12.
鼻咽癌组织拉曼光谱研究进展   总被引:2,自引:0,他引:2  
鼻咽癌是东南亚地区及中国南方地区高发的恶性肿瘤,具有独特的地理、种族分布特点,并且存在恶性程度高、预后差、早期诊断困难等问题。拉曼光谱技术是基于非弹性光散射基本原理的一种快速且无损的检测方法,能够在分子振动水平上提供生化成分等信息。综述基于拉曼光谱技术的鼻咽癌组织研究最新进展。主要介绍了国内外小组采用拉曼光谱及表面增强拉曼光谱(SERS)进行鼻咽癌组织检测研究的概况,其中重点介绍该研究小组近期在鼻咽癌组织的高波数拉曼光谱、鼻咽癌组织涂片的拉曼光谱,以及研发的人活体鼻咽癌组织内镜检测装置及其临床实验情况。最后,对鼻咽癌组织拉曼光谱研究的发展前景进行了展望。  相似文献   

13.
随着抗菌药物广泛应用于临床,细菌耐药日益严重.实现快速、高灵敏、准确的细菌及其药物敏感性检测是缓解细菌耐药的关键环节.表面增强拉曼光谱(SERS)具有快速、灵敏、无损等优点,可直接获取分子指纹信息,它已成为一种有效的细菌及其耐药性检测技术.不同种类细菌的分子组成和结构存在差异、抗生素处理前后细菌的特征拉曼信号会发生变化...  相似文献   

14.
噻菌灵(TBZ)属苯并咪唑类杀菌剂,容易在水果、蔬菜及相应的果蔬饮品中形成有毒残留。基于密度泛函理论(DFT)的量子化学计算方法和表面增强拉曼光谱(SERS)技术,从理论和实验角度系统研究了噻菌灵在纳米银胶粒子表面的吸附行为和增强效应。采用柠檬酸钠还原法制备了具有表面增强拉曼散射活性的银纳米溶胶,并对水相的噻菌灵进行了SERS光谱研究。利用TBZ-Ag4四种吸附模型对噻菌灵与银纳米溶胶的相互作用进行了理论分析。结合FT-Raman光谱和B3LYP/6-311G(d)理论计算的结果,借助Gaussian View5.0程序的图形化功能,对噻菌灵分子的振动模式、FT-Raman振动光谱和SERS光谱进行了系统的指认。研究结果表明:噻菌灵分子的所有原子在同一平面上,属于Cs对称性;其在银纳米溶胶表面具有十分显著的表面增强拉曼活性;分子中的S原子与银胶粒子发生吸附作用,并通过该分子的长轴方向垂直于银纳米银胶表面;可利用SERS光谱方法对痕量的噻菌灵进行快速检测。为研究噻菌灵的特性以及其快速检测提供了理论和实验依据。  相似文献   

15.
In this paper, two immunoassay methods based on SERS are developed for multiplex analysis, both of which stemmed from the concept of forming a sandwich structure ‘capture antibody substrate/antigen/Raman‐reporter‐labeled immuno‐nanoparticles’. They are two‐molecule labeled one‐nanoparticle and one‐molecule labeled two‐nanoparticle methods. In both the methods, two different antibodies covalently bound to a solid substrate can specifically capture two different antigens from a sample. The captured antigens in turn bind selectively to their corresponding antibodies immobilized on Raman‐reporter‐labeled nanoparticles. Multianalyte immunoassay is successfully demonstrated by the detection of characteristic Raman bands of the probe molecules only when the antigen and antibody are matched. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
动态表面增强拉曼光谱是在干态与湿态表面增强拉曼光谱(SERS)检测的基础上发展而来的,不仅具有极好的信号增强,还具有良好的重复性与稳定性。提出了一种基于动态SERS与多元分析方法的敌瘟磷快速定量分析方法。实验中,首先测量100,50,10,5,1,0.5和0.1 mg·L-1敌瘟磷动态SERS谱图,并使用多项式校正方法去除光谱基线漂移。然后,处理后的全范围(600~1 800 cm-1)与特征范围(674~713,890~1 195,1 341~1 399和1 549~1 612 cm-1)光谱分别利用支持向量机回归(SVR)构建定量模型,实现对敌瘟磷的定量分析。同时,实验还评估了主成分分析(PCA)对定量分析结果的影响。实验结果表明特征范围光谱所建立的模型预测误差较小,而数据经过PCA处理后预测误差得到进一步下降。最优回归模型是由特征范围光谱经PCA处理后所构建的模型(RMSECV=0.065 7 mg·L-1),模型能够准确地预测敌瘟磷溶液浓度。为了测试实际检测中的效果,该方法被用来对苹果表面的敌瘟磷残留进行检测,并通过气相色谱法进行验证。结果表明该方法对于同一样本多次检测值波动较小,且检测均值与气相色谱检测值相差较小,相对误差最大仅为5.13%。此外,动态SERS检测可在2 min内完成,且后续数据处理也可在数秒内完成,同时整个过程的试剂消耗仅在2 μL左右。因此,所提出的方法在敌瘟磷快速准确检测具有极大优势。  相似文献   

17.
Abstract

During recent years the study of the vibrational structure of catalysts by laser Raman spectroscopy (LRS) and of the interfacial properties of adsorbed species on solid surfaces by resonance Raman spectroscopy (RRS) and surface-enhanced Raman spectroscopy (SERS) have comprised one of the major research activities in the area of Raman spectroscopy [1–10] as applied to catalysts [11, 12].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号