首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Indium tin oxide nanowires have been grown by dc sputtering on different substrates without the use of catalysts or oblique deposition. The nanowire length was of the order of several μm, while their diameter was ∼50–100 nm. Small side branches on the nanowires were frequently observed. The nanowires were characterized by scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The growth mechanism of the nanowires is discussed.  相似文献   

2.
In this work we report the successful formation of tin oxide nanowires and tin oxide nanoribbons with high yield and by using simple cheap method. We also report the formation of curved nanoribbon, wedge-like tin oxide nanowires and star-like nanowires. The growth mechanism of these structures has been studied. Scanning electron microscope was used in the analysis and the EDX analysis showed that our samples is purely Sn and O with ratio 1:2. X-ray analysis was also used in the characterization of the tin oxide nanowire and showed the high crystallinity of our nanowires. The mechanism of the growth of our1D nanostructures is closely related to the vapor–liquid–solid (VLS) process. The photoluminescence PL measurements for the tin oxide nanowires indicated that there are three stable emission peaks centered at wavelengths 630, 565 and 395 nm. The nature of the transition may be attributed to nanocrystals inside the nanobelts or to Sn or O vacancies occurring during the growth which can induce trapped states in the band gap.  相似文献   

3.
Silicon nanowires (SiNWs) have been grown on crystalline silicon (Si), indium tin oxide (ITO) and stainless steel (SS) substrates using a gold catalyst coating with a thickness of 200 nm via pulsed plasma-enhanced chemical vapor deposition (PPECVD). Their morphological, mineralogical and surface characteristics have been investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Raman analysis. SiNWs growth is accompanied by oxidation, thus yielding partially (SiO x ) and fully oxidized (SiO2) Si sheaths. The mean diameters of these SiNWs range from 140 to 185 nm. Si with (111) and (220) planes exists in SiNWs grown on all three substrates while Si with a (311) plane is detected only for Si and ITO substrates. Computational simulation using density functional theory (DFT) has also been conducted to supplement the experimental Raman analyses for crystalline Si and SiO2. XPS results reveal that ca. 30 % of the SiNWs have been oxidized for all substrates. The results presented in this paper can be used to aid selection of appropriate substrates for SiNW growth, depending on specific applications.  相似文献   

4.
Indium oxide, tin oxide and indium tin oxide nanowires have been grown by vapor deposition on Si and quartz substrates. Under the growth conditions used, pure SiOx nanowires, a mixture of SiOx and indium oxide, tin oxide or indium tin oxide nanostructures, or pure indium oxide, tin oxide or indium tin oxide nanostructures could be obtained at different substrate temperatures. The growth mechanism of the obtained nanostructures at different substrate temperatures is discussed. Optical and electrical properties of the deposited pure indium oxide, tin oxide or indium tin oxide nanostructures have been measured, and low sheet resistances on quartz substrates have been obtained for indium oxide and indium tin oxide nanostructures.  相似文献   

5.
热蒸发法在硅基底上制备了任意取向的氧化锌纳米线阵列。经过热蒸发过程,硅基底表面覆盖了大量均匀分布的氧化锌岛,在这些岛上生长出了直径为几十纳米的非定向纳米线。出于实用考虑,基底周围的温度在制备过程中保持在500°C以下。从这些氧化锌纳米线获得了场发射。测得10μA/cm2所对应的开启场强为3.0V/μm。并且用透明阳极技术研究了发射中心分布。观察到场发射来自于整个样品表面。从这些结果可以看出氧化锌纳米线在平板显示器中有着巨大的应用潜力.  相似文献   

6.
Hybrid metal oxide nanowires (NWs), with small characteristic diameter and large aspect ratio, can have unique and yet tunable chemical, optical and electrical properties by independently controlling the chemical compositions and morphologies of the individual components. Such hybrid NWs are promising building blocks in many applications, such as catalysis, sensors, batteries, solar cells and photoelectrochemical devices. However, these applications are hindered by the lack of scalable and economic methods for the synthesis of hybrid NWs. Here, we report a simple, scalable and new sol-flame method to synthesize various hybrid metal oxide NWs, including nanoparticle-shell decorated NWs (NP-shell@NW), NP-chain decorated NW (NP-chain@NW) and doped NWs. The sol-flame process first coats existing NWs with NPs or dopants precursors prepared by the sol–gel process, and then dissociates/oxidizes these precursors in flame. The sol-flame method uniquely combines the merits of the flame process (e.g., high temperature and fast heating rate) with low temperature sol–gel method (e.g., broad material choices and excellent chemical composition control). For both the NP-shell@NW and NP-chain@NW cases, the high temperature flame, compared to furnace, provides much faster heating rate and shorter duration for annealing, which evaporates and burns the precursor solvent rapidly, causing NPs to quickly nucleate around NWs without significant agglomeration. Hence, higher loading density of NPs with smaller sizes is decorated to the NWs, and the formed hybrid NP@NW exhibits significantly higher catalytic activity than that of the furnace-annealed sample. Similarly when using the sol-flame method to dope NWs, the high temperature flame enables rapid dopant diffusion and short annealing duration that maintains the morphology of the original materials and protects the delicate NW substrates from damage. We believe that the new sol-flame method can be applied to synthesize various 1-D hybrid metal oxide nanostructures, thereby impacting diverse application fields.  相似文献   

7.
High quality ZnO nanowires were synthesized at high temperature without using heterogenous catalysts. The nanowires had a uniform prismatic shape and were grown in a cacti-like morphology. Characterizations of the products by X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy showed that the ZnO nanowires were single crystalline and of high purity. An intensive exciton emission was observed around 3.25 eV from the ZnO nanowires at room temperature. The growth mechanism was discussed based on the experimental conditions and the ZnO crystal growth habits. This growth method can be used to prepare other metal oxide nanowires. PACS 61.46.+w; 81.16.-c; 81.07.De, 81.05.Hd  相似文献   

8.
Photoconducting properties of In2O3 nanowires were studied. Devices based on individual In2O3 nanowires showed a substantial increase in conductance of up to four orders of magnitude upon exposure to UV light. Such devices also exhibited short response times and significant shifts in the threshold gate voltage. The sensitivity to UV of different wavelengths was studied and compared. We have further demonstrated the use of UV light as a “gas cleanser” for In2O3 nanowire chemical sensors, leading to a recovery time as short as 80 s. Received: 8 January 2003 / Accepted: 9 January 2003 / Published online: 28 March 2003 RID="*" ID="*"Corresponding author. Fax: +1-213/740-8677, E-mail: chongwuz@usc.edu  相似文献   

9.
The lattice-dynamical properties of the intermediate oxide of tin (IO) have been investigated over the temperature range 80–295 K. The logarithm of the recoil-free fraction varied linearly with temperature. However, a Debye model does not give a good account of this dependence. By comparison with the other oxides of the Sn-O system, the recoil-free fraction for tin atoms with 2+ and 4+ oxidation states of the IO were estimated. At room temperature, they are 0.463 and 0.323 for 4+ and 2+ states respectively.  相似文献   

10.
王雄  才玺坤  原子健  朱夏明  邱东江  吴惠桢 《物理学报》2011,60(3):37305-037305
在ITO玻璃基底上用射频磁控溅射技术生长氧化锌锡(ZnSnO)沟道有源层、用PECVD生长SiO2薄膜作为薄膜晶体管的栅绝缘层研制了薄膜晶体管(TFT), 器件的场效应迁移率最高达到μn=9.1 cm2/(V ·s),阈值电压-2 V,电流开关比为104. 关键词: 氧化锌锡 薄膜晶体管 场效应迁移率  相似文献   

11.
X-ray photoelectron spectra of 30- and 100-nm nanolayers, recorded in the energy range 0–35 eV, show a strong dependence of both the distribution of the density of Sn 5s, p+ O2 p valence states and the change in the intensity ratio for the Sn 4d and O 2s subvalence states on the annealing temperature and nanolayer thickness. In the nanolayers fabricated at an annealing temperature of 450°C, an unusually strong band of O 2s states of unbound oxygen is observed, which is retained for nanolayers doped with palladium and disappears for nanolayers doped with gold and silver.  相似文献   

12.
《Current Applied Physics》2010,10(2):636-641
In this paper, a very simple procedure was presented for the reproducible synthesis of large-area SnO2 nanowires (NWs) on a silicon substrate by evaporating Sn powders at temperatures of 700, 750, and 800 °C. As-obtained SnO2 NWs were characterized by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectroscopy. They revealed that the morphology of the NWs is affected by growth temperature and the SnO2 NWs are single-crystalline tetragonal. The band gap of the NWs is in the range of 4.2–4.3 eV as determined from UV/visible absorption. The NWs show stable photoluminescence with an emission peak centered at around 620 nm at room-temperature. The sensors fabricated from the SnO2 NWs synthesized at 700 °C exhibited good response to LPG (liquefied petroleum gas) at an operating temperature of 400 °C.  相似文献   

13.
黄睿  朱静  于荣 《中国物理 B》2009,18(7):3024-3030
Tungsten oxide nanowires of diameters ranging from 7 to 200~nm are prepared on a tungsten rod substrate by using the chemical vapour deposition (CVD) method with vapour--solid (VS) mechanism. Tin powders are used to control oxygen concentration in the furnace, thereby assisting the growth of the tungsten oxide nanowires. The grown tungsten oxide nanowires are determined to be of crystalline W18O49. I--V curves are measured by an \textit{in situ} transmission electron microscope (TEM) to investigate the electrical properties of the nanowires. All of the I--V curves observed are symmetric, which reveals that the tungsten oxide nanowires are semiconducting. Quantitative analyses of the experimental I--V curves by using a metal--semiconductor--metal (MSM) model give some intrinsic parameters of the tungsten oxide nanowires, such as the carrier concentration, the carrier mobility and the conductivity.  相似文献   

14.
The field-emission properties of molybdenum oxide nanowires grown on a silicon substrate and its emission performance in various vacuum gaps are reported in this article. A new kind of molybdenum oxides named nanowires with nanoscale protrusions on their surfaces were grown by thermal vapor deposition with a length of ~1 μm and an average diameter of ~50 nm. The morphology, structure, composition and chemical states of the prepared nanostructures were characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). According to XRD, XPS, and TEM analyses, the synthesized samples were composed of MoO2 nanowires formed over a thin layer of crystalline Mo4O11. TEM observation revealed that these nanowires have some nanoscale protrusion on their surface. These nanoprotrusions resulted in enhancement of field-emission properties of nanowires comprising nanoprotrusions. The turn-on emission field and the enhancement factor of this type of nanostructures were measured 0.2 V/μm and 42991 at the vacuum gap of 300 μm, respectively. These excellent emission properties are attributed to the special structure of the nanowires that have potential for utilizing in vacuum nanoelectronic and microelectronic applications.  相似文献   

15.
Indium oxide films doped with tin (ITO-films) have been hf-sputtered from an 80 at-%In2O3/20 at-%SnO2 target onto glass substrates. The sputter atmosphere contained mainly argon (10−2Torr) with addition of oxygen (0≦p O 2≦2·10−2Torr). The sputtered films aren-conductors. The conductivity and density of charge carriers depend on the oxygen content of the sputter gas. They could be varied by two orders of magnitude. In air or in oxygen atmosphere the films oxidize at the surface and for a certain depth beneath the surface, thus decreasing the conductivity. The Hall mobility of the sputtered films is smaller (≈10 cm2V−1 s−1) than one observes at ITO films produced by CVD sparaying or other methods. The conductivity of as sputtered films approached maximum values of about 1000Ώ−1cm−1.  相似文献   

16.
Indium tin oxide (ITO) surfaces were treated by solvent cleaning, by plasma of oxygen, argon, nitrogen and by argon ion (Ar+) sputtering. Angular-dependent X-ray photoelectron spectroscopy (ADXPS) and ultraviolet photoelectron spectroscopy (UPS) were used to determine the chemical composition, the chemical states and the work function after each treatment. It was found that oxygen plasma and nitrogen plasma chemically reacted with the ITO surfaces. Yet little etching of the surface can be observed after plasma treatments. Among all treatments, oxygen-plasma-treated ITO achieved the highest work function of 4.40 eV, whereas Ar+-sputtered ITO surface had the lowest work function of 3.90 eV. The stoichiometry of the ITO surface is shown to be the major controlling factor of the ITO work function. Received: 7 February 2000 / Accepted: 28 March 2000 / Published online: 13 September 2000  相似文献   

17.
Isoelectronic (In, Al) doped gallium oxide nanowires have been grown by a vapour solidification process. XRD and TEM were used for their structural characterization. The morphology and optical properties of the In(Al)-doped Ga2O3 nanowires have been investigated by means of the secondary electrons and cathodoluminescence (CL) techniques in the SEM. Red and blue-UV emission bands appear as complex bands and their components are influenced by the presence of In or Al, leading to a blue-shift of the blue-UV band usually observed in undoped gallium oxide. These In and Al related changes in the luminescence features of doped Ga2O3 nanostructures are discussed.  相似文献   

18.
19.
Single-crystal Eu3+-doped wurtzite ZnO micro- and nanowires were synthesized by chemical vapor deposition. The nanostructures grew via a self-catalytic mechanism on the walls of an alumina boat. The structure and properties of the doped ZnO were characterized using X-ray diffraction, energy-dispersive X-ray spectroscopy, scanning and transmission electron microscopy, and photoluminescence (PL) methods. A 10-min synthesis yielded vertically grown nanowires of 50–400 nm in diameter and several micrometers long. The nanowires grew along the ±[0001] direction. The Eu3+ concentration in the nanowires was 0.8 at.%. The crystal structure and microstructure of were compared for Eu3+-doped and undoped ZnO. PL spectra showed a red shift in emission for Eu3+-doped (2.02 eV) compared to undoped ZnO nanowires (2.37 eV) due to Eu3+ intraionic transitions. Diffuse reflectance spectra revealed widening of the optical bandgap by 0.12 eV for Eu3+-doped compared to undoped ZnO to yield a value of 3.31 eV. Fourier-transform infrared spectra confirmed the presence of europium in the ZnO nanowires.  相似文献   

20.
Indium Tin Oxide (ITO) films prepared by reactive rf sputtering show excellent properties for optical recording applications in a very narrow range of oxygen partial pressure (around 4×10–5 Torr). This narrow range is at the edge of a plateau in the electrical conductivity of the films. A small increase in the oxygen partial pressure (P(O2)5×10–5 Torr) causes a large and abrupt change in the electrical conductivity as well as in the structural and optical properties of these films. In addition, irradiating films at the edge of the plateau (P(O2)4×10–5) with a low-power pulsed laser (25 mW) yields transparent films. These results suggest that the same mechanism may be responsible for the opaque to transparent transformations observed in these experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号