首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactions of metal acetates with 4-amino-3,5-bis(3-pyridyl)-1,2,4-triazole (3-abpt) and co-ligands gave rise to four new complexes, namely [Zn2(3-abpt)(beta)(DMF) (H2O)2]n·nH2O (1), [Zn(3-abpt)(ip)]n·3nH2O (2), [Zn(3-abpt)(ip)(H2O)2]n·2nH2O (3), and [Cu2(3-abpt)2(C6H5COO)4(H2O)2]n·2nH2O (4) (ip = isophthalate, beta = 1,2,4,5-benzenetetracarboxylate). Compound 1 is a 3D coordination polymer with uncommon 3,4-connected (62.8)2(62.82.102) network. Compounds 24 are all 1D coordination polymers, which exhibit diversity structures. Compound 2 is a tubular-like chain, 3 is a ring-like network, and 4 is a zigzag chain. Their thermal stabilities and the photoluminescence of 1 have also been investigated.  相似文献   

2.
Three coordination polymers [Pb(HMIDC)]n (1), [Ba(H2MIDC)2]n (2) and {[Mg(HMIDC)(H2O)2]·H2O}n (3) (H3MIDC = 2-methyl-1H-imidazole-4,5-dicarboxylic acid) have been yielded under different hydro(solvo)thermal conditions. X-ray diffraction analysis reveals that compound 1 exhibits a 3-D framework constructed by 2-D networks joined by μ4-HMIDC2− bridges. Compound 2 also presents a 3-D structure, which is generated from 2-D layers pillared by 1-D chains along the c-axis. Compound 3 is a 1-D infinite chain and forms supramolecular layers through hydrogen bonds. The thermal and solid-state photoluminescence properties of polymers 1-3 have been determined as well. The theoretical predication of the methyl substituent effect of the ligand H3MIDC has been investigated.  相似文献   

3.
Three mixed-ligand CuII complexes bearing iminodiacetato (ida) and N-heterocyclic ligands, namely, [Cu2(ida)2(bbbm)(H2O)2] · H2O (1), [Cu2(ida)2(btx)(H2O)2] · 2H2O (2) and [Cu2(ida)2(pbbm)(H2O)2] · H2O · 3CH3OH (3) (bbbm = 1,1-(1,4-butanediyl)bis-1H-benzimidazole, btx = 1,4-bis(1,2,4-triazol-1-ylmethyl)benzene, pbbm = 1,1-(1,3-propanediyl)bis-1H-benzimidazole), in addition to three fcz-based CuII complexes, namely, {[Cu(fcz)2(H2O)2] · 2NO3}n (4), {[Cu(fcz)2(H2O)] · SO4 · DMF · 2CH3OH · 2H2O}n (5) and {[Cu(fcz)2Cl2] · 2CH3OH}n (6) (fcz = 1-(2,4-difluorophenyl)-1,1-bis[(1H-1,2,4-triazol-l-yl) methyl]ethanol) have been prepared according to appropriate synthetic strategies with the aim of exploiting new and potent catalysts. Single crystal X-ray diffraction shows that 1 and 2 possess similar binuclear structures, 3 features a 2D pleated network, and 4 exhibits a 1D polymeric double-chain structure. Complexes 1-6 are tested as catalysts in the green catalysis process of the oxidative coupling of 2,6-dimethylphenol (DMP). Under the optimized reaction conditions, these complexes are catalytically active by showing high conversion of DMP and high selectivity of PPE. The preliminary study of the catalytic-structural correlations suggests that the coordination environment of the copper center have important influences on their catalytic activities.  相似文献   

4.
Four new complexes, {[M(NAIP)(H2O)4]·2H2O}n (M = Co (1), M = Mn (2)), {[Zn(NAIP)]·0.5H2O}n (3) and {Cd(NAIP)(H2O)2]·1.5H2O}n (4) [H2NAIP = 5-(nicotinamido)-isophthalic acid] have been prepared and structurally characterized. The ligand NAIP2− exhibits different coordination modes and leads to the formation of various architectures. Complexes 1 and 2 show a one-dimensional (1D) zigzag chain, where hydrogen-bonding interactions further link these chains to a three dimensional (3D) supramolecular structure. For complex 3, a 3D coordination network with a four-coordinated Zn(II) and NAIP2− as a SBU was observed. Complex 4 presents a three-connected 2-fold interpenetrated 3D network with a (10, 3)-b net topology. Their luminescent and magnetic properties have been investigated in the solid state.  相似文献   

5.
Coordination reaction of a known three-dimensional (3D) polymer precursor {Na3[Na9(Cbdcp)6(H2O)18]}n (A, Cbdcp = N-(4-carboxybenzyl)-(3,5-dicarboxyl)pyridinium) with Zn(NO3)2·6H2O in H2O or H2O/DMF at 100 °C and in the presence of aspirin, 5-fluorouracil (5-FU) as modulators, trans-1,2-bis(4-pyridyl)ethylene (bpe) or 1,2-bis(4-pyridyl)ethane (bpea) as ancillary ligands afforded six novel Zn(II)-based metal-organic frameworks (MOFs), that is, {[Zn(Cbdcp)(H2O)3]·H2O}n (1, 1D zigzag chain), {[Zn(HCbdcp)2]·H2O}n (2, 2D sheet), {[Zn(Cbdcp)(bpe)1/2]·2H2O}n (3, 3D polymer), {[Zn(Cbdcp)(bpe)1/2]·2H2O}n (4, 2D network), {[Zn(Cbdcp)(bpea)1/2]·2H2O}n (5, 3D polymer) and {[Zn(Cbdcp)(bpea)1/2]·2H2O}n (6, 2D network). Among them, compound 2 contains aromatic rings, positively charged pyridinium, Zn2+ cation centers and carboxylic acid groups lined up on the 2D sheet structure with a certain extended surface exposure. The unique structure of 2 facilitates effective association with carboxyfluorescein (FAM) labeled probe single stranded DNA (probe ss-DNA, delineates as P-DNA) to yield a P-DNA@2 system, and leads to fluorescence quenching of FAM via a photoinduced electron transfer process. The P-DNA@2 system is effective and reliable for the detection of human immunodeficiency virus 1 ds-DNA (HIV ds-DNA) sequences and capable of distinguishing complementary HIV ds-DNA from mismatched target sequences with the detection limit as low as 10 pM (S/N = 3).  相似文献   

6.
Four novel coordination polymers constructed from flexible pamoic acid, namely [Co(pam)(4,4′-bipy)]n·nH2O (1), [Ni(pam)(4,4′-bipy)(H2O)2]n·2nCH3CN (2), [Cd(pam)(py)2]n·npy (3) and [Mn2(pam)2(py)6(H2O)2]n·2npy (4), (H2pam = pamoic acid, 4,4′-bipy = 4,4′-bipyridine, py = pyridine), have been synthesized and characterized by elemental analysis, infrared spectra and X-ray crystallography. Complex 1 is a 2-D coordination polymer constructed from chelating bis-bidentate pam and 4,4′-bipyridine bridging ligands. Complex 2 is a 2-D coordination polymer assembled by bis-monodentate pam and 4,4′-bipyridine, where acetonitrile is filled in the rectangle channels. Both 2-D coordination polymers display undulated (4,4) grid layers as sql topology. Complex 3 displays a 1-D polymeric chain using chelating bis-bidentate pam as bridging ligand. Complex 4 exhibits an interesting bis-monodentate pam-Mn(II) 1-D polymeric chain, in which exist two-type six-coordinated manganese centers. Mn(1) is bound to four pyridine ligands, whereas Mn(2) is combined to two pyridine and two H2O molecules. Their thermal stabilities have been investigated. Cadmium complex 3 displays strong green luminescence with emission maximum at 543 nm.  相似文献   

7.
Four coordination polymers, [Zn(pda)(bpy)(H2O)]n·nH2O (1), [Cd(pda)(prz)(H2O)]n (2), [Co3(μ3-OH)2(pda)2(pyz)]n·2nH2O (3) and [Pr2(pda)3(H2O)2]n (4) (H2pda=1,3-phenylendiacetic acid, bpy=4,4′-bipyridine, prz=piperazine and pyz=pyrazine) have been hydrothermally synthesized and characterized. Complex 1 is a 1D wheel-like chain structure, which is further extended into a 3D metal-organic supramolecular framework by H-bonds and π-π stacking interactions. Complex 2 is a 1D ladder-like chain structure, which is also further extended into a 3D metal-organic supramolecular framework by H-bonds. Complex 3 possess a 2D sheet structure with infrequent two pairs of double-helix chains. Complex 4 features a 3D structure. Both 1 and 2 display strong blue fluorescent emission at room temperature. Magnetic susceptibility measurements of complexes 3 and 4 exhibit antiferromagnetic interactions between the nearest metal ions, with C=9.99 and 3.43 cm3 mol−1 K, and θ=−23.9 and −46.3 K, respectively.  相似文献   

8.
Reactions of malonic acid (H2mal) with PrCl3·6H2O afforded the known complex [Pr2(mal)3(H2O)6]n (1), and compounds [Pr2(mal)3(H2O)6]n·2nH2O (2·2nH2O), [PrCl(mal)(H2O)3]n·0.5nH2O (3·0.5nH2O) and [Pr(mal)(Hmal)(H2O)3]n·nH2O (4·nH2O) using various reaction ratios, reaction media (H2O, MeOH) and pH values. Analogous reactions with CeCl3·7H2O afforded compounds [Ce2(mal)3(H2O)6]n (5), [CeCl(mal)(H2O)3]n·nH2O (6·nH2O) and [Ce(mal)(Hmal)(H2O)3]n·nH2O (7·nH2O). Compounds 2·2nH2O and 3·0.5nH2O were characterized by X-ray crystallography, and 47 by microanalytical and spectroscopic data. The malonate(-2) ligand adopts three different coordination modes in the structures of 13, i.e., the μ2OO′:κO″ and the μ42OO′:κ2O″:κO? in 1 and 2 leading to a 3D network structure, and the μ32OO′:κ2O″:κO? in 3 promoting an 1D structure. The thermal decomposition of 1 and 3·0.5nH2O was monitored by TG/DTA and TG/DTG measurements. The structural features of 13 are discussed in terms of known malonato(-2) LnIII and CaII complexes. The bioinorganic chemistry relevance of our results is discussed.  相似文献   

9.
Reactions of 2-(pyridine-3-yl)-1H-4,5-imidazoledicarboxylic acid (H3PyIDC) with a series of Ln(III) ions affords ten coordination polymers, namely, {[Ln(H2PyIDC)(HPyIDC)(H2O)2]·H2O}n [Ln=Nd (1), Sm (2), Eu (3) and Gd (4)], {[Ln(HPyIDC)(H2O)3]·(H2PyIDC)·H2O}n [Ln=Gd (5), Tb (6), Dy (7), Ho (8) and Er (9)], and {[Y2(HPyIDC)2(H2O)5]·(bpy)·(NO3)2·3H2O}n (10) (bpy=4,4′-bipyridine). They exhibit three types of networks: complexes 1-4 are isomorphous coordination networks containing neutral 2D metal-organic layers, while complexes 5-9 are isomorphous, which consist of cationic metal-organic layers and anionic organic layers, and complex 10 is a 2D network built up from 4-connected HPyIDC2− anion and 4-connected Y(III) ions. In addition, thermogravimetric analyses and solid-state luminescent properties of the selected complexes are investigated. They exhibit intense, characteristic emissions in the visible region at room temperature.  相似文献   

10.
Complexes of ZnII salts with 4,4′-bipyridine-N,N′-dioxide (bpdo) have been prepared by solvathermal and solvent layering methods. Three complexes were obtained from ZnBr2: 1 is a 2D coordination polymer [Zn2Br4(bpdo)2]n, (2) a discrete trimetallic molecule [Zn3Br6(H2O)2(bpdo)4] and 3 a salt [ZnBr4][Zn(H2O)5(bpdo)]. Complexes 2 and 3 contain ZnII ions in both octahedral and tetrahedral coordination geometry. While in 2, these are covalently linked by bridging bpdo ligands forming zwitterionic trimetallic molecules, in 3 there is complete charge separation into [ZnBr4]2− anions and [Zn(H2O)5(bpdo)]2+ cations. When Zn(NCS)2 is used as starting material, a 1D coordination polymer [Zn(H2O)2 (bpdo)(NCS)2]n is obtained.  相似文献   

11.
Four new inorganic–organic hybrid frameworks [Mn(L)(H2O)2]n (1), {[Co(L)(H2O)3]·2H2O·CH3OH}n (2), {[Zn(L)(H2O)]·H2O}n (3) and [Cd(HL)2]n (4) [H2L = 4-(isonicotinamido)phthalic acid] have been synthesized and characterized by single-crystal X-ray diffraction analysis. Complex 1 has three-dimensional (3D) structure and topology related to SrAl2 (sra) with Schläfli symbol of (42·63·8). And 2 displays (3,3)-connected two-dimensional (2D) network with (4,82) topology, while 3 exhibits a uninodal (3,3)-connected (6,3) 2D network, which is further linked by N–H?O hydrogen bonding interactions to give 3D structure with hms topology and Schläfli symbol of (63)(69·8). Complex 4 with partial deprotonated HL ligands also has a 2D network structure. In addition, the magnetic property of 1, nonlinear optical property of 3 and photoluminescence of 3 and 4 were investigated.  相似文献   

12.
[MnCl2(NOR)(H2O)2] (1), [MnCl2(SPAR)(H2O)2] (2), [CoCl2(NOR)(H2O)2] (3) [CoCl2(SPAR)(H2O)2] (4), [CuCl2(phen)(NOR)] (5) and [CuCl2(phen)(SPAR)] (6) complexes with norfloxacin (NOR) and sparfloxacin (SPAR) were obtained from MnCl2·4H2O, CoCl2·4H2O and CuCl2(phen). In all cases the NOR and SPAR coordinate in the neutral zwitterionic form. The electron paramagnetic resonance spectra of the Cu(II) complexes (5) and (6) in aqueous and DMSO solutions indicate mixture of mononuclear and binuclear complex. Complexes (1-6), together with the corresponding ligands were evaluated for their in vitro trypanocidal effect, against both bloodstream trypomastigotes and intracellular forms of Trypanosoma cruzi. SPAR and NOR were poorly effective upon T. cruzi, complexes (3) and (4) were active against intracellular forms of the parasite. The complexes (5) and (6) displayed a higher activity upon both bloodstream and intracellular forms. The potency of fluoroquinolones, specially those coordinated to Cu(II)-phen justify further trypanocidal screening assays with this compounds in vitro as well as upon experimental models of T. cruzi infection.  相似文献   

13.
In this study the synthesis, crystal structure and characterization of three new transition metal polynuclear compounds with formula [Cu(dipm)(μ-dca)2]n(H2O) (1), [Ni(dipm)(μ-dca)2]n(C2H6O)1/2 (2) and [Cd(dipm)(μ-dca)2]n (3) (in which dipm = bis(pyrimidin-2-yl)amine and dca = dicyanamide) are reported. The isostructural compounds 1 and 2 contain a double-bridging end-to-end dca unit connecting two metal ions and a single bridging end-to-end dca unit between subsequent metals. Compound 3 exhibits only single bridging end-to-end dca units, oriented in three directions, giving rise to a 3D framework.  相似文献   

14.
Three zinc(II) nitrite coordination polymers, [Zn(4-bpdb)(NO2)2]n (1), {[Zn(3-bpdb)(NO2)]·0.5H2O}n (2) and [Zn(3-bpdh)(NO2)2]n (3), 4-bpdb = 1,4-bis(4-pyridyl)-2,3-diaza-1,3-butadiene, 3-bpdb = 1,4-bis(3-pyridyl)-2,3-diaza-1,3-butadiene and 3-bpdh = 2,5-bis(3-pyridyl)-3,4-diaza-2,4-hexadiene} were prepared and characterized by elemental analyses and IR spectroscopy. Compound 3 was structurally characterized by single-crystal X-ray diffraction and is one-dimensional polymer with coordination environments of distorted octahedral, ZnN2O4. The thermal stabilities of compounds 1–3 were studied by thermal gravimetric (TG) and differential thermal analyses (DTA). Direct calcination of the compounds 1–3 at 600 °C under air atmospheres yields different morphologies of nano-sized ZnO.  相似文献   

15.
Three new zinc coordination polymers [Zn2(btc)2(H2O)2]n·n[Zn(H2O)6] (1), [Zn3(btc)2(2,2′-bipy)2(H2O)3]n·2nH2O (2) and [Zn3(btc)2(H2O)6]n·nH2O (3) (H3btc=1,2,4-benzenetricarboxylic acid, 2,2′-bipy=2,2′-bipyridine) were obtained by the diffusion method and their crystal structures were determined by single-crystal X-ray diffraction. Compounds 1-3 have the similar tetrametallic unit [Zn4(btc)2] SBUs and these SBUs are further connected into stair-like structure, 2-D layer and 3-D framework for 1, 2 and 3, in which the btc3− ligands adopt μ3, μ4 and μ5 coordination modes, respectively. The title compounds show strong blue fluorescence, which may be assigned as π*→n transition of the ligand mixed with the ligand-to-metal change transfer (LMCT), indicating the fluorescence, indicates the title compounds may be good candidates for blue-light photoactive materials.  相似文献   

16.
Four novel lanthanide coordination polymers [Pr(mal)(OH)(bipy) · 2H2O]n (1), {[Dy1(SBA)3(H2O)2][Dy2(SBA)3(H2O)2] · 4H2O}n (2), {[Tb(OHnic)(Onic)(H2O)5 · (OHnicH)] · H2O}n (3) and {[Sm(OHnic)(Onic)(H2O)5 · (OHnicH)] · H2O}n (4) (Hmal = maleic acid, HSBA = 4-sulfobenzoic acid, OHnicH = 6-hydroxynicotinic acid and bipy = 2,2′-bipyridine) have been synthesized and determined by single crystal X-ray diffraction. Complex 1 is a 1-D helical chain with seven-coordinated praseodymium centers. Complex 2 forms 1-D chain-like molecular structure containing two crystallographically unique dysprosium centers, the Dy1 center is seven-coordinated while Dy2 is eight-coordinated. The isomorphous complexes 3 and 4 exhibit an unprecedented 1-D chain-like polymeric structure through hydroxyl oxygen atoms of bridging Onic2− anions linking up the neighboring central ions, and there exist three types of 6-OHnicH ligands in the structural unit which is rare for lanthanide carboxylate complexes. The photophysical properties of these complexes were studied using ultraviolet absorption spectra, fluorescence excitation and emission spectra.  相似文献   

17.
Three novel lanthanide complexes, namely, [Ce(Himdc)(H2imdc)(H2O)3]·H2O (1), {[Dy(Himdc)(Ox)0.5(H2O)2]·H2O}n (2), and {[Nd(Himdc)(Ox)0.5(H2O)2]·H2O}n (3) (H3imdc = imidazole-4,5-dicarboxylic acid, Ox = oxalate), have been successfully prepared by the assembly of lanthanide ions and H3imdc ligand under different synthetic conditions. All of the complexes have been characterized by means of elemental analysis, IR, TG analysis, luminescence spectroscopy as well as single-crystal X-ray diffraction analysis. The 3D supramolecular structure of 1 is constructed from 1D zig-zag chains through the hydrogen bonding interactions. Complex 2 possesses the chair-shaped secondary building units (SBUs) with Dy6(Himdc)4(Ox)2 and meso-helical chains (P + M), resulting in a novel 2D structure based on the linkages of oxalate ligand. Complex 3 also presents 2D layer structure with uninodal 6-connected net topology, but crystallizes in the different space group and owns higher coordination number of the central metal atom than complex 2. The luminescence property of 2 is investigated in the solid state at room temperature.  相似文献   

18.
Three Co(II), Ni(II) and Zn(II) complexes of orotate with the N-methylimidazole ligand were synthesized and characterized by means of elemental and thermal analysis, magnetic susceptibilities, IR, UV-Vis spectroscopic and antimicrobial activity studies. The crystal structures of [Co(HOr)(H2O)2(Nmeim)2]3·H2O (1), [Ni(HOr)(H2O)2(Nmeim)2] (2) and [Zn(HOr)(H2O)(Nmeim)2] (3) were determined by the single crystal X-ray diffraction technique (H3Or = orotic acid and Nmeim = N-methylimidazole). In complexes 1 and 2, the Co(II) and Ni(II) ions have distorted octahedral geometries with two Nmeim, one orotate and two aqua ligands. Complex 3 has a distorted trigonal bipyramidal geometry with two N-methylimidazole, one orotate and one aqua ligands. In the complexes, the orotate is coordinated to the metal(II) ions through the deprotonated nitrogen atom of the pyrimidine ring and the oxygen atom of the carboxylate group as a bidentate ligand. The complexes form a three-dimensional framework by hydrogen bonding, C-H?π and π?π stacking interactions. The MIC values of the complexes against selected microorganisms were determined to be in range 300-2400 μg/mL.  相似文献   

19.
The first gadolinium(III) complexes with the trideprotonated form of the 1,2,3,4,5,6-cyclohexanehexacarboxylic acid (H3clhex3−) of formulae [Gd(H3clhex)(H2O)4]n·3nH2O (1) and [Gd(H3clhex)(H2O)4]n·6nH2O (2) have been prepared through the gel technique and their structures determined by single crystal X-ray diffraction. The structure of 1 is made up of 63 honey-comb layers which are generated by [Gd(H2O)4]3+ cations and H3clhex3− anions acting as three-fold nodes and three-fold connectors, respectively. The structure of 2 consists of a [44,62] two-dimensional network extended in the ac plane where the H3clhex−3 groups act as four-fold connectors and the [Gd(H2O)4]3+ units as four-fold nodes. Compound 1 crystallises in a non-centrosymmetric space group P21. Its absolute structure could be determined reliably, indicating the spontaneous resolution of a homochiral crystal and the freezing of one of the conformations of the all-cis H3clhex−3 ligand. Compound 2 crystallises in the P21/n space group, the presence of an inversion centre making both conformations to occur. 1 and 2 are different solvates of the same system, the latter one synthesised under a higher pH value of the gel than the former. The investigation of the magnetic properties of 1 and 2 in the temperature range 1.9–300 K reveals a Curie law behaviour for the two compounds.  相似文献   

20.
Solution phase reaction of silver nitrate with various hydrogen-bonding capable dipyridyl ligands has resulted in three 1-D coordination polymers and one discrete cationic species with diverse silver coordination spheres. [Ag(NO3)(4,4′-dpk)]n (1, 4,4′-dpk = 4,4′-dipyridylketone), {[Ag(4-bpmp)](NO3) · 6H2O} (2, 4-bpmp = bis(4-pyridylmethyl)piperazine) and {[Ag2(NO3)(3-bpmp)(H2O)2]NO3}n (3, 3-bpmp = bis(3-pyridylmethyl)piperazine) all display 1-D coordination polymer chain or ribbon motifs. Long-range Ag?O interactions and/or hydrogen-bonding promote the formation of different supramolecular aggregations such as a 2-D double layer slab in 1, a threefold interpenetrated 3-D diamondoid network in 2, and a 2-D single layer in 3. Compound 2 manifests “infinite” 1-D T(5)2 water molecule tapes within its incipient voids. {[Ag(2,4′-pmpp)2](NO3) · H2O} (4, 2,4′-pmpp = 2-pyridyl(4′-methylpyridyl)piperazine) contains discrete cationic species connected by nitrate-mediated Ag?O interactions into a supramolecular 1-D zig-zag chain. Complexes 1 and 4 undergo weak blue–violet luminescence upon irradiation with ultraviolet light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号