首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
EuPdGe was prepared from the elements by reaction in a sealed tantalum tube in a high-frequency furnace. Magnetic susceptibility measurements show Curie-Weiss behavior above 60 K with an experimental magnetic moment of 8.0(1)μB/Eu indicating divalent europium. At low external fields antiferromagnetic ordering is observed at TN=8.5(5) K. Magnetization measurements indicate a metamagnetic transition at a critical field of 1.5(2) T and a saturation magnetization of 6.4(1)μB/Eu at 5 K and 5.5 T. EuPdGe is a metallic conductor with a room-temperature value of 5000±500 μΩ cm for the specific resistivity. 151Eu Mössbauer spectroscopic experiments show a single europium site with an isomer shift of δ=−9.7(1) mm/s at 78 K. At 4.2 K full magnetic hyperfine field splitting with a hyperfine field of B=20.7(5) T is observed. Density functional calculations show the similarity of the electronic structures of EuPdGe and EuPtGe. T-Ge interactions (T=Pd, Pt) exist in both compounds. An ionic formula splitting Eu2+T0Ge2− seems more appropriate than Eu2+T2+Ge4− accounting for the bonding in both compounds. Geometry optimizations of EuTGe (T=Ni, Pt, Pd) show weak energy differences between the two structural types.  相似文献   

2.
Sr2BUO6 double perovskites with B′=Mn, Fe, Ni, Zn have been prepared in polycrystalline form by solid-state reaction, in air or reducing conditions. These new materials have been studied by X-ray diffraction (XRD), magnetic susceptibility and magnetization measurements. The room-temperature crystal structure is monoclinic (space group P21/n), and contains alternating B′O6 and UO6 octahedra sharing corners, tilted along the three pseudocubic axes according to the Glazer notation aab+. The magnetic measurements show a spontaneous magnetic ordering below TN=21 K for B′=Mn, Ni, and TC=150 K for B′=Fe. From a Curie-Weiss fit, the effective paramagnetic moment for B′=Mn (5.74 μB/f.u.) and B′=Ni(3.51 μB/f.u.) are significantly different from the corresponding spin-only moments for the divalent cations, suggesting the possibility of a partial charge disproportionation B2++U6+B3++U5+, also accounting for plausible ferrimagnetic interactions between B′ and U sublattices. The strong curvature of the reciprocal susceptibility for B′=Fe precludes a Curie-Weiss fit but also suggests the presence of ferrimagnetic interactions in this compound. This charge disproportionation effect is also supported by the observed B′O distances, which are closer to the expected values for high-spin, trivalent Mn, Fe and Ni cations.  相似文献   

3.
The morphologies of the charge carriers in the perovskite system SrFe1−xTixO3−δ are explored by transport and magnetic measurements. Oxygen vacancies are present in all samples, but they do not trap out the Fe3+ ions they introduce. The x=0.05 composition was prepared with three different values of δ. They all show small-polaron conduction above 225 K; but where there is a ratio c=Fe4+/Fe<0.5, the polaron morphology appears to change progressively with decreasing temperature below 225 K to two-Fe polarons that become ferromagnetically coupled in an applied magnetic field at lower temperatures; With an applied field of 2500 Oe, divergence of the paramagnetic susceptibility for zero-field-cooled and field-cooled samples manifests a greater stabilization of ferromagnetic pairs on cooling in the applied field. With a c>0.5, the data are consistent with a disproportionation reaction 2Fe4+=Fe3++Fe(V)O6/2 that inhibits formation of two-Fe polarons and, on lowering the temperature, creates Fe3+-Fe(V)-Fe3+ superparamagnetic clusters.  相似文献   

4.
Fluorination of the parent oxide, BaFeO3−δ, with polyvinylidine fluoride gives rise to a cubic compound with a=4.0603(4) Å at 298 K. 57Fe Mössbauer spectra confirmed that all the iron is present as Fe3+. Neutron diffraction data showed complete occupancy of the anion sites, indicating a composition BaFeO2F, with a large displacement of the iron off-site. The magnetic ordering temperature was determined as TN=645±5 K. Neutron diffraction data at 4.2 K established G-type antiferromagnetism with a magnetic moment per Fe3+ ion of 3.95 μB. However, magnetisation measurements indicated the presence of a weak ferromagnetic moment that is assigned to the canting of the antiferromagnetic structure. 57Fe Mössbauer spectra in the temperature range 10-300 K were fitted with a model of fluoride ion distribution that retains charge neutrality of the perovskite unit cell.  相似文献   

5.
The total conductivity and Seebeck coefficient of a series of Ni-containing phases, including La2Ni1−xMxO4+δ (M=Co, Cu; x=0.1-0.2) with K2NiF4-type structure and perovskite-like La0.90Sr0.10Ga0.65Mg0.15Ni0.20O3−δ and La0.50Pr0.50Ga0.65Mg0.15Ni0.20O3−δ, were studied in the oxygen partial pressure range from 10−18 Pa to 50 kPa at 973-1223 K. Within the phase stability domain, the conductivity of layered nickelates is predominantly p-type electronic and occurs via small-polaron mechanism, indicated by temperature-activated hole mobility and p(O2) dependencies of electrical properties. In oxidizing conditions similar behavior is characteristic of Ni-containing perovskites, which exhibit, however, significant ionic contribution to the transport processes. The role of ionic conduction increases with decreasing p(O2) and becomes dominant in reducing atmospheres. All nickelate-based phases decompose at oxygen pressures considerably lower with respect to Ni/NiO boundary. The partial substitution of nickel in La2Ni(M)O4+δ has minor effect on the stability limits, which are similar to that of La0.90Sr0.10Ga0.65Mg0.15Ni0.20O3−δ. On the contrary, praseodymium doping enhances the stability of La0.50Pr0.50Ga0.65Mg0.15Ni0.20O3−δ down to p(O2) values as low as 10−17-10−10 Pa at 1023-1223 K.  相似文献   

6.
For comparison with the Mn4+/Mn3+ oxoperovskites at the crossover from localized to itinerant behavior of the σ-bonding e electrons, the electronic properties of three oxygen non-stoichiometric, mixed-valent Fe4+/Fe3+ oxoperovskites were explored by measuring their resistivity ρ(T), thermoelectric power α(T), and magnetic susceptibility χ(T). Oxidation of Ca2Fe2O5 by annealing in ozone progresses by oxygen insertion to give conductive CaFeO3 perovskite clusters in a localized-electron, weakly oxidized brownmillerite Ca2Fe2O5+δ matrix. Removal of 0.12 oxygen per formula unit from La1/3Sr2/3FeO3 lowers somewhat its cooperative disproportionation reaction, and fivefold-coordinated ions neighboring oxygen vacancies in the more ionically bonded slabs act as donors to the covalently bonded Fe(V)O6 planes. Single-crystal SrFeO2.83 exhibited bad-metal behavior with superparamagnetic, electron-rich fluctuations below 240 K that, on cooling below 190 K, become progressively trapped by the oxide-ion vacancies as an immobile second phase; long-range antiferromagnetic order is stabilized below a TN≈60 K.  相似文献   

7.
The substitution of manganese with nickel in LaSr2Mn2O7−δ, where the solubility limit corresponds to approximately 25% Mn sites, enhances the Ruddlesden-Popper phase stability at elevated temperatures and atmospheric oxygen pressure. The total conductivity of LaSr2Mn2−yNiyO7−δ (y=0-0.4) decreases with nickel additions, whilst the average thermal expansion coefficients calculated from dilatometric data in the temperature range 300-1370 K increase from (11.4-13.7)×10−6 K−1 at y=0 up to (12.5-14.4)×10−6 K−1 at y=0.4. The conductivity and Seebeck coefficient of LaSr2Mn1.6Ni0.4O7−δ, analyzed in the oxygen partial pressure range 10−15-0.3 atm at 600-1270 K, display that the electronic transport is n-type and occurs via a small polaron mechanism. Reductive decomposition is observed at the oxygen pressures close to Ni/NiO boundary, namely ∼2.3×10−11 atm at 1223 K. Within the phase stability domain, the electronic transport properties are essentially p(O2)-independent. The steady-state oxygen permeability of dense LaSr2Mn1.6Ni0.4O7−δ membranes is higher than that of (La,Sr)MnO3−δ, but lower if compared to perovskite-like (Sr,Ce)MnO3−δ. Porous LaSr2Mn1.6Ni0.4O7−δ cathodes in contact with apatite-type La10Si5AlO26.5 solid electrolyte exhibit, however, a relatively poor electrochemical performance, partly associated with strong cation interdiffusion between the materials.  相似文献   

8.
The new ternary pnictides Er12Ni30P21 and Er13Ni25As19 have been synthesized from the elements. They crystallize with hexagonal structures determined from single-crystal X-ray data for Er12Ni30P21 (space group P63/m, a=1.63900(3) nm, c=0.37573(1) nm, Z=1, RF=0.062 for 1574 F-values and 74 variable parameters), and for Er13Ni25As19 (Tm13Ni25As19-type structure, space group P6?, a=1.6208(1) nm, c=0.38847(2) nm, Z=1, RF=0.026 for 1549 F-values and 116 variable parameters). These compounds belong to a large family of hexagonal structures with a metal-metalloid ratio of 2:1. HRTEM investigations were conducted to probe for local ordering of the disordered structure at the nanoscale. The magnetic properties of the phosphide Er12Ni30P21 have been studied in the temperature of range 2<T<300 K and with applied fields up to 5 T. The magnetic susceptibility follows the Curie-Weiss law from 4 to 300 K. The measured value of μeff=9.59 μB corresponds to the theoretical value of Er3+.  相似文献   

9.
Two antiperovskite-type ternary nitrides of InNM3 (M=Ni, Co) have been synthesized from In2O3 and Ni or Co powders under NH3 atmosphere at 600 °C. InNCo3 is a new ternary nitride whereas InNNi3 was previously reported as InN0.5Ni3 with different nitrogen content. The lattice parameters refined by Rietveld method are 3.8445(1) Å for InNNi3 and 3.8541(7) Å for InNCo3, respectively. Both nitrides show metallic behaviors and below 70 K the T2 temperature dependence of resistivity was observed indicative of a Fermi liquid behavior. The temperature dependence of the field-cooling (FC) and zero-field-cooling (ZFC) magnetization and time decay of thermoremanent magnetization indicate the spin-glass-like behavior in InNM3 (M=Ni, Co). The freezing temperatures for this behavior, Tf, are about 300 K for InNNi3 and 10 K for InNCo3, respectively.  相似文献   

10.
Neodymium and europium tungsten oxynitrides have been synthesized by the nitridation of corresponding R2W2O9 precursor oxides, in ammonia flow at 1173 K during 24 h. The obtained polycrystalline neodymium oxynitride phase, with NdWO3.05N0.95 composition, crystallizes with the tetragonal symmetry of the scheelite-type structure, space group S.G. I41/a (#88). The analogous europium derivative, with formula EuWO1.58N1.42, presents the cubic perovskite-type structure, S.G. (# 221). Unit-cell parameters, a=5.255(1) Å, c=11.399(3) Å, and a=3.976(3) Å, have been established from Rietveld refinements of collected X-ray powder diffraction patterns for the Nd and Eu- oxynitrides, respectively.Magnetic susceptibility measurements show that NdWO3.05N0.95 behaves as paramagnetic in a wide range of temperature T ∼50-300 K. The downwards deviation from the Curie-Weiss law below 40 K reflects the splitting of the 4I9/2 ground state of Nd3+ experienced under the influence of a S4 crystal field CF potential, as the successful reproduction of the magnetic susceptibility χ−1m vs. T, using semi-empirical structure-derived CF parameters, indicates. EuWO1.58N1.42 is paramagnetic down to 20 K, and the measured effective magnetic moment 8.01 μB is indicative of the presence of Eu2+ in this oxynitride. The observed sudden jump in the magnetic susceptibility at 20 K and the value of 6 μB for the saturation moment is attributed to the onset of ferrimagnetic interactions in which the Eu2+ and W5+ sublattices appear to be involved.  相似文献   

11.
The crystal and magnetic structures of SrFe2+2(PO4)2 have been determined by neutron powder diffraction data at low temperatures (space group P21/c (no. 14); Z=4; a=9.35417(13) Å, b=6.83808(10) Å, c=10.51899(15) Å, and β=109.5147(7)° at 15 K). Two magnetic phase transitions were found at T1=7.4 K (first-order phase transition) and T2=11.4 K (second-order phase transition). The transition at T2 was hardly detectable by dc and ac magnetization measurements, and a small anomaly was observed by specific heat measurements. At T1, strong anomalies were found by dc and ac magnetization and specific heat. The structure of SrFe2(PO4)2 consists of linear four-spin cluster units, Fe2-Fe1-Fe1-Fe2. Below T1, the propagation vector of the magnetic structure is k=[0,0,0]. The magnetic moments of the inner Fe1-Fe1 atoms of the four-spin cluster unit are ferromagnetically coupled. The magnetic moment of the outer Fe2 atom is also ferromagnetically coupled with that of the Fe1 atom but with spin canting. The four-spin cluster units form ferromagnetic layers parallel to the [−101] plane, while these layers are stacked antiferromagnetically in the [−101] direction. Spin canting of the outer Fe2 atoms provides a weak ferromagnetic moment of about 1 μB along the b-axis. The refined magnetic moments at 3.5 K are 4.09 μB for Fe1 and 4.07 μB for Fe2. Between T1 and T2, a few weak magnetic reflections were observed probably due to incommensurate magnetic order.  相似文献   

12.
The magnetic structure of the Fe2P-type R6CoTe2 phases (R=Gd-Er, space group P6¯2m) has been investigated through magnetization measurement and neutron powder diffraction. All phases demonstrate high-temperature ferromagnetic and low-temperature transitions: TC=220 K and TCN=180 K for Gd6CoTe2, TC=174 K and TCN=52 K for Tb6CoTe2, TC=125 K and TCN=26 K for Dy6CoTe2, TCN=60 K and TN=22 K for Ho6CoTe2 and TCN∼30 K and TN∼14 K for Er6CoTe2.Between 174 and 52 K Tb6CoTe2 has a collinear magnetic structure with K0=[0, 0, 0] and with magnetic moments along the c-axis, whereas below 52 K it adopts a non-collinear ferromagnetic one.Below 60 K the magnetic structure of Ho6CoTe2 is that of a non-collinear ferromagnet. The holmium magnetic components with a K0=[0, 0, 0] wave vector are aligned ferromagneticaly along the c-axis, whereas the magnetic component with a K1=[1/2, 1/2, 0] wave vector are arranged in the ab plane. The low-temperature magnetic transition at ∼22 K coincides with the reorientation of the Ho magnetic component with the K0 vector from the collinear to the non-collinear state.Below 30 K Er6CoTe2 shows an amplitude-modulate magnetic structure with a collinear arrangement of magnetic components with K0=[0, 0, 0] and K1=[1/2, 1/2, 0]. The low-temperature magnetic transition at ∼14 K corresponds to the variation in the magnitudes of the MErK0 and MErK1 magnetic components.In these phases, no local moment was detected on the cobalt site.The magnetic entropy of Gd6CoTe2 increases from ΔSmag=−4.5 J/kg K at 220 K up to ΔSmag=−6.5 J/kg K at 180 K for the field change Δμ0H=0-5 T.  相似文献   

13.
Three dinickel(II) macrocyclic complexes [Ni2L(μ-OAc)]ClO4•X (L = L1, L2 and L3) with two 2-thiophenoethyl pendant arms, have been synthesized by cyclocondensation between N,N-bis(3-aminopropyl)-2-thiophenoethylamine and 2,6-diformyl-4-R-phenol (where R = Me, Cl and F and X = MeOH, 2MeCN and H2O, respectively), in the presence of nickel(II) ions. The complexes were characterized by elemental analysis, spectroscopic methods and X-ray diffraction techniques. The geometry around both of the Ni(II) ions in each molecule is a slightly distorted octahedral and the thiopheno groups do not coordinate to the Ni(II) ions, resulting that the complexes display contorted saddle-form configurations. The distances between the Ni?Ni centers for the complexes are 3.145, 3.171 and 3.155 Å, respectively. The influences of the substituted groups R in the benzene rings of the macrocyclic units on the structure, electrochemistry, magnetism, cleavage and antibacterial property to DNA have been investigated. The ES-MS results of the complexes confirm that [Ni2L]2+ species in methanol solution are very stable because all the peaks in ES-MS spectra contain this kind of units. The reduction potentials of the complexes shift towards anode upon increasing the drawing electronic ability of substituted groups. Magnetic measurements in the 2-300 K range indicate weak antiferromagnetism for the dinuclear Ni(II) complexes and the magnetic exchange interactions enhance with the decrease of the Ni-Ni distances. These complexes exhibit cleavage activities towards plasmid pBR322 DNA and antibacterial activities.  相似文献   

14.
A new Ni(II) layered hybrid organic-inorganic compound of formula Ni2[(NDI-BP)(H2O)2]·2H2O has been prepared in very mild conditions from N,N′-bis(2-phosphonoethyl)napthalene-1,4:5,8-tetracarboximide (NDI-BP ligand) and NiCl2. The X-ray powder structure characterization of the title compound suggests a pillared layered organic-inorganic hybrid structure. The distance between the organic and inorganic layers has been found to be 17.8 Å. The inorganic layers consist of corner sharing [NiO5(H2O)] octahedra and they are pillared by the diphosphonate groups. DC and AC magnetic measurements as a function of temperature and field indicate the presence of 2D antiferromagnetic exchange interactions between the nearest-neighbor Ni(II) ions below 100 K. A long-range magnetic ordering at Tc∼21 K has been established and is attributed to the presence of spin canting. AC magnetic measurements as a function of temperature at different frequencies confirm the occurrence of the magnetic ordering temperature at T=21 K and the presence of a slight structural disorder in the title compound.  相似文献   

15.
Electrons, electron holes, or excitations in finite or infinite ‘multimer systems’ may be localized or delocalized. In the theory of Hush, localization depends on the ratio Δ/λ (Δ/2 = coupling; λ = reorganization energy). The latter theory has been extended to the infinite system [S. Larsson, A. Klimkāns, Mol. Cryst. Liq. Cryst. 355 (2000) 217]. The metal/insulator transition often takes place abruptly as a function of Δ/λ. It is argued that localization in a system with un-filled bands cannot be determined on the basis of Mott–Hubbard U alone, but depends on the number of accessible valence states, reorganization energy λ and coupling Δ (=2t). In fact U = 0 does not necessarily imply delocalization. The analysis here shows that there are many different situations for an insulator to metal transition. Charge transfer in doped NiO is characterized by Ni2+ − Ni3+ exchange while charge transfer in pure NiO is characterized by a disproportionation 2Ni2+ → Ni+ + Ni3+. In spite of the great differences between these two cases, U has been applied without discrimination to both. The relevant localization parameters appear to be Δ and λ in the first case, with only two oxidation states, and U, Δ and λ in the second case with three oxidation states. The analysis is extended to insulator-metal transitions, giant magnetic resistance (GMR) and high Tc superconductivity (SC). λ and Δ can be determined quite accurately in quantum mechanical calculations involving only one and two monomers, respectively.  相似文献   

16.
Two new isostructural cobalt selenite halides Co5(SeO3)4Cl2 and Co5(SeO3)4Br2 have been synthesized. They crystallize in the triclinic system space group P−1 with the following lattice parameters for Co5(SeO3)4Cl2: a=6.4935(8) Å, b=7.7288(8) Å, c=7.7443(10) Å, α=66.051(11)°, β=73.610(11)°, γ=81.268(9)°, and Z=1. The crystal structures were solved from single-crystal X-ray data, R1=3.73 and 4.03 for Co5(SeO3)4Cl2 and Co5(SeO3)4Br2, respectively. The new compounds are isostructural to Ni5(SeO3)4Br2.Magnetic susceptibility measurements on oriented single-crystalline samples show anisotropic response in a broad temperature range. The anisotropic susceptibility is quantitatively interpreted within the zero-field splitting schemes for Co2+ and Ni2+ ions. Sharp low-temperature susceptibility features, at TN=18 and 20 K for Co5(SeO3)4Cl2 and Co5(SeO3)4Br2, respectively, are ascribed to antiferromagnetic ordering in a minority magnetic subsystem. In isostructural Ni5(SeO3)4Br2 magnetically ordered subsystem represents a majority fraction (TN=46 K). Nevertheless, anisotropic susceptibility of Ni5(SeO3)4Br2 is dominated at low temperatures by a minority fraction, subject to single-ion anisotropy effects and increasing population of Sz=0 (singlet) ground state of octahedrally coordinated Ni2+.  相似文献   

17.
Nuclear magnetic resonance (1H NMR and 19F NMR) measurements performed at 90-295 K, inelastic incoherent neutron scattering (IINS) spectra and neutron powder diffraction (NPD) patterns registered at 22-190 K, and X-ray powder diffraction (XRPD) measurements performed at 86-293 K, provided evidence that the crystal of [Zn(NH3)4](BF4)2 has four solid phases. The phase transitions occurring at: TC3=101 K, TC2=117 K and TC1=178 K, as were detected earlier by differential scanning calorimetry (DSC), were connected on one hand only with an insignificant change in the crystal structure and on the other hand with a drastic change in the speed of the anisotropic, uniaxial reorientational motions of the NH3 ligands and BF4 anions (at TC3 and at TC2) and with the dynamical orientational order-disorder process (“tumbling”) of tetrahedral [Zn(NH3)4]2+ and BF4 ions (at TC1). The crystal structure of [Zn(NH3)4](BF4)2 at room temperature was determined by XRPD as orthorhombic, space group Pnma (No. 62), a=10.523 Å, b=7.892 Å, c=13.354 Å and Z=4. Unfortunately, it was not possible to determine the structure of the intermediate and the low-temperature phase. However, we registered the change of the lattice parameters and unit cell volume as a function of temperature and we can observe only a small deviation from near linear dependence of these parameters upon temperature in the vicinity of the TC1 phase transition.  相似文献   

18.
The commensurate superstructures of a NiAs/Ni2In type parent structure, Ni3.32InTe2 and Ni3.12In0.86Te2.14 (q=γ[0 0 1]*, γ=2/3) as well as one dimensionally incommensurate structure of Ni3InTe2 (γ=0.71) were refined from neutron powder diffraction data (Rwp=4.77%, 4.53% and 4.91% for the three structures, respectively, at 298 K). The commensurate structures were refined in the P63/mmc space group (c=3cNiAs). The stacking sequence at the hcp array is -In/Te/Te/- and the trigonal bipyramidal site within the In layer, Ni(2), is partially occupied while it is empty in the Te layers. The octahedral position in between the In and Te layers, Ni(1a), is fully occupied while the octahedral position in between two adjacent Te layers, Ni(1b), is partially occupied. With decreasing In and Ni content, the modulation wave vector, γ, was found to increase continuously until γ=1. From this, crenel functions to describe the whole homogeneity range of the solid solution were constructed with the length of the atomic domains ΔTe=γ (and hence ΔIn=ΔNi=1−γ) and ΔNi(1b)=γ/2 (and hence ΔNi(1a)=1−γ/2) which were then used for the refinement of the incommensurate structure of Ni3InTe2. The corresponding effect in real space is that the single In layers separating double layers of Te occur less frequent when γ in increasing until at γ=1 the CdI2 type structure of Ni1+xTe2 is reached.  相似文献   

19.
The Ni3(PO4)2 phosphate was synthesized by the ceramic method in air atmosphere. The crystal structure consists of a three-dimensional skeleton constructed from Ni3O14 edge-sharing octahedra, which are interconnected by (PO4)3− oxoanions with tetrahedral geometry. The magnetic behavior was studied on powdered sample by using susceptibility, specific heat and neutron diffraction data. The nickel(II) orthophosphate exhibits a three-dimensional magnetic ordering at approximately 17.1 K. However, its complex crystal structure hampers any parametrization of the J-exchange parameter. The specific heat measurements of Ni3(PO4)2 exhibit a three-dimensional magnetic ordering (λ-type) peak at 17.1 K. Measurements above TN suggest the presence of a small short-range order in this phase. The total magnetic entropy was found to be 28.1 KJ/mol at 50 K. The magnetic structure of the nickel(II) phosphate exhibits ferromagnetic interactions inside the Ni3O14 trimers which are antiferromagnetically coupled between them, giving rise to a purely antiferromagnetic structure.  相似文献   

20.
Single crystals of Ni7−δSnTe2 were grown during re-crystallization of the presynthesized powder in a two zone furnace. The modulated structure was solved and refined in the (3+2)-dimensional superspace group I4/mmm(0-α0, α00)0.ss.mm with lattice parameters a=3.759(1) and c=19.410(2) Å (measured at 153 K) and Z=2. Satellite reflections observed in the diffraction images can be assigned to the incommensurate modulation vectors q1=da* and q2=db* with d=0.410(1). The composition resulting from X-ray structure refinement is Ni5.81SnTe2. The structure model has been also developed in the orthorhombic (3+1)-dimensional superspace group Immm(α00)00s assuming twinning according to [110], giving thus the composition Ni5.79SnTe2. The origin of the modulation can be attributed to a variation of the occupancy of the Ni(3) site in Ni/Te slabs of the structure. Band structure calculations on a commensurate approximant and single crystal electrical resistivity measurements reveal anisotropic metallic conductivity for this compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号