首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nickel and iron substituted LaCoO3 with rhombohedrally distorted perovskite structure were obtained in the temperature range of 600-900 °C by thermal decomposition of freeze-dried citrates and by the Pechini method. The crystal structure, morphology and defective structure of LaCo1−xNixO3 and LaCo1−xFexO3 were characterized by X-ray diffraction and neutron powder diffraction, TEM and SEM analyses and electron paramagnetic resonance spectroscopy. The reducibility was tested by temperature programmed reduction with hydrogen. The products of the partial and complete reduction were determined by ex-situ XRD experiments. The replacement of Co by Ni and Fe led to lattice expansion of the perovskite structure. For perovskites annealed at 900 °C, there was a random Ni, Fe and Co distribution. The morphology of the perovskites does not depend on the Ni and Fe content, nor does it depend on the type of the precursor used. LaCo1−xNixO3 perovskites (x>0.1) annealed at 900 °C are reduced to Co/Ni transition metal and La2O3 via the formation of oxygen deficient Brownmillerite-type compositions. For LaCo1−xNixO3 annealed at 600 °C, Co/Ni metal, in addition to oxygen-deficient perovskites, was formed as an intermediate product at the initial stage of the reduction. The interaction of LaCo1−xFexO3 with H2 occurs by reduction of Co3+ to Co2+ prior to the Fe3+ ions. The reducibility of Fe-substituted perovskites is less sensitive towards the synthesis procedure in comparison with that of Ni substituted perovskites.  相似文献   

2.
La0.6Sr1.4MnO4 (LSMO4) layered perovskite with K2NiF4 structure was prepared and evaluated as anode material for La0.8Sr0.2Ga0.83Mg0.17O3 − δ (LSGM) electrolyte supported intermediate temperature solid oxide fuel cells (IT-SOFCs). X-ray diffraction results show that LSMO4 is redox stability. Thermal expansion coefficient of LSMO4 is close to that of LSGM electrolyte. By adopting LSMO4 as anode and La0.6Sr0.4Co0.8Fe0.2O3 (LSCF) as cathode, maxium power densities of 146.6, 110.9 mW cm− 2 with H2 fuel at 850, 800 °C and 47.3 mW cm− 2 with CH4 fuel at 800 °C were obtained, respectively. Further, the cell demonstrated a reasonably stable performance under 180 mA cm− 2 for over 40 h with H2 fuel at 800 °C.  相似文献   

3.
Misfit-type Ca3−xLaxCo4O9+δ (x=0, 0.3) oxides were synthesised to be evaluated as possible cathode materials for proton conducting fuel cells (PCFCs) based on BaCe0.9Y0.1O3−δ (BCY10) dense ceramic electrolyte. The electrical conductivity value of Ca2.7La0.3Co4O9+δ (σ≈53 S cm-1 at 600 °C) is in the range of usually required value for a cathode application (about 50-100 S cm-1). In order to test the performance of each compound as cathode material, impedance measurements were carried out on Ca3−xLaxCo4O9+δ/BaCe0.9Y0.1O3−δ/Ca3−xLaxCo4O9+δ symmetrical half cells over the temperature range 400-800 °C under wet air. A promising electrocatalytic activity has been observed with both compounds Ca3Co4O9+δ and Ca2.7La0.3Co4O9+δ. Factually, the area specific resistance obtained was about 2.2 Ω cm2 at 600 °C.  相似文献   

4.
Ceramics can play a remarkable role in the engineering of intermediate temperature solid oxide fuel cells (IT-SOFCs) capable of meeting the ambitious targets of reduced cost and improved lifetime. While mixed ionic-electronic conductors such as LaxSr1−xCoyFe1−yO3−δ are being used as volumic cathodes to increase the catalytic performance of these components, adequate microstructures are also an important requirement for optimal performance, particularly at lower operating temperatures. This work is devoted to the fabrication of La0.6Sr0.4Co0.2Fe0.8O3−δ films on Ce0.9Gd0.1O2−δ substrates by electrostatic spray deposition (ESD) and to the characterization of the microstructural dependence on the deposition conditions. A wide variety of microstructures ranging from dense to porous, with particular features such as reticulation and micro-porosity, were obtained by varying the ESD deposition parameters: nozzle-to-substrate distance (15, 30, 43, 45, and 58 mm), solution flow rate (0.34 and 1.5 mL/h), and substrate temperature (300, 350, 400 and 450 °C). The correlation between deposition parameters and resulting microstructures was systematically studied and put into evidence.  相似文献   

5.
La-doped Sr2CoWO6 double perovskites have been prepared in air in polycrystalline form by solid-state reaction. These materials have been studied by X-ray powder diffraction (XRPD), neutron powder diffraction (NPD) and magnetic susceptibility. The structural refinement was performed from combined XRPD and NPD data (D2B instrument, λ=1.594 Å). At room temperature, the replacement of Sr2+ by La3+ induces a change of the tetragonal structure, space group I4/m of the undoped Sr2CoWO6 into the distorted monoclinic crystal structure, space group P21/n, Z=2. The structure of La-doped phases contains alternating CoO6 and (Co/W)O6 octahedra, almost fully ordered. On the other hand, the replacement of Sr2+ by La3+ induces a partial replacement of W6+ by Co2+ into the B sites, i.e. Sr2−xLaxCoW1−yCoyO6 (y=x/4) with segregation of SrWO4. Magnetic and neutron diffraction measurements indicate an antiferromagnetic ordering below TN=24 K independently of the La-substitution.  相似文献   

6.
Perovskite type LaCoxFe1−xO3 nanoparticles was synthesized by a sol-gel citrate method. The structural, electrical and sensing characteristics of the LaCoxFe1−xO3 system were investigated. The structural characteristics were performed by using X-ray diffraction (XRD) and transmission electron microscopy (TEM) to examine the phase and morphology of the resultant powder. The XRD pattern shows nanocrystalline solid solution of LaCoxFe1−xO3 with perovskite phase. Electrical properties of synthesized nanoparticles are studied by DC conductivity measurement. The sensor shows high response towards ammonia gas in spite of other reducing gases when x = 0.8. The effect of 0.3 wt.% Pd-doped LaCo0.8Fe0.2O3 on the response and a recovery time was also addressed.  相似文献   

7.
A series of spinel-type CoxNi1−xFe2O4 (x = 0, 0.2, 0.4, 0.5, 0.6, 0.8, 1.0) magnetic nanomaterials were solvothermally synthesized as enzyme mimics for the eletroctrocatalytic oxidation of H2O2. X-ray diffraction and scanning electron microscope were employed to characterize the composition, structure and morphology of the material. The electrochemical properties of spinel-type CoxNi1−xFe2O4 with different (Co/Ni) molar ratio toward H2O2 oxidation were investigated, and the results demonstrated that Co0.5Ni0.5Fe2O4 modified carbon paste electrode (Co0.5Ni0.5Fe2O4/CPE) possessed the best electrocatalytic activity for H2O2 oxidation. Under optimum conditions, the calibration curve for H2O2 determination on Co0.5Ni0.5Fe2O4/CPE was linear in a wide range of 1.0 × 10−8–1.0 × 10−3 M with low detection limit of 3.0 × 10−9 M (S/N = 3). The proposed Co0.5Ni0.5Fe2O4/CPE was also applied to the determination of H2O2 in commercial toothpastes with satisfactory results, indicating that CoxNi1−xFe2O4 is a promising hydrogen peroxidase mimics for the detection of H2O2.  相似文献   

8.
Structural and magnetic studies are presented for the perovskite type Sr1−xLaxCo0.5Fe0.5O3−δ (0?x?0.5) materials annealed under moderately high-oxygen pressures of ∼200 atm. A detailed analysis of the room temperature neutron time-of-flight diffraction data reveals that the crystal structure of the sample SrCo0.5Fe0.5O2.89(1), previously described as vacancy-disordered cubic, is similar to the formerly reported, oxygen-vacancy ordered Sr8Fe8O23 compound, i.e. Sr8Co4Fe4O23 is tetragonal with the I4/mmm symmetry. With an increase of the La content the studied materials become nearly oxygen stoichiometric and a lowering of the crystal symmetry is observed from cubic (x=0.1 and 0.2) to tetragonal I4/mcm (x=0.3 and 0.4), and finally to monoclinic I12/c1 (x=0.5). Low-temperature structural and magnetic measurements show a ferromagnetic ordering with the maximum Curie temperature near 290 K at x=0.2.  相似文献   

9.
Phases formed by the reduction of compounds of the type La0.5Sr0.5MO3 (M=Fe, Co) have been characterized by means of temperature programmed reduction, X-ray powder diffraction, 57Fe Mössbauer spectroscopy and Fe K-, Co K-, Sr K-, and La LIII-edge X-ray absorption spectroscopy. The results show that treatment of the material of composition La0.5Sr0.5FeO3 (which contains 50% Fe4+ and 50% Fe3+) at 650 °C in a flowing 90% hydrogen/10% nitrogen atmosphere results in the formation of an oxygen-deficient perovskite-related phase containing only trivalent iron. Further heating in the gaseous reducing environment at 1150 °C results in the formation of the Fe3+-containing phase SrLaFeO4, which has a K2NiF4-type structure, and metallic iron. The material of composition La0.5Sr0.5CoO3 is more susceptible to reduction than the compound La0.5Sr0.5FeO3 since, after heating at 520 °C in the hydrogen/nitrogen mixture, all the Co4+ and Co3+ are reduced to metallic cobalt with the concomitant formation of strontium- and lanthanum-oxides.  相似文献   

10.
The reaction between lanthanum oxide and strontium carbonate was studied non-isothermally between 350 and 1150 °C at different heating rates, intermediates and the final solid product were characterized by X-ray diffractometry (XRD). The reaction proceeds through formation of lanthanum oxycarbonate La2O(CO3)2, lanthanum dioxycarbonate La2O2CO3, and non-stoichiometric strontium lanthanum oxide La2SrOx (x = 4 + δ). La4SrO7 was found to be the final product which begins to form at ∼700 °C. Li+ doping enhances the formation of the final product as well as commencement of the reactions at lower temperatures.  相似文献   

11.
The K2NiF4 phases LaSrCo0.5Fe0.5O4 and La1.2Sr0.8Co0.5Fe0.5O4, and their reduced forms LaSrCo0.5Fe0.5O3.75 and La1.2Sr0.8Co0.5Fe0.5O3.85, have been successfully prepared by solid-state reactions, followed by reduction in 10% H2/N2 in order to produce oxygen-deficient materials. All materials crystallize in a tetragonal K2NiF4 structure (space group I4/mmm) with Co and Fe randomly distributed over the B-sites of the structure. Mössbauer spectra have confirmed the trivalent state of Fe in these materials. In the reduced materials, oxide ion vacancies are confined to the equatorial planes of the K2NiF4 structure and the Co is present almost entirely as Co2+ ions; low-temperature neutron powder diffraction data reveal that these reduced phases are antiferromagnetically ordered with a tetragonal noncollinear arrangement of the moments. The Co3+ ions, present in stoichiometric LaSrCo0.5Fe0.5O4 and La1.2Sr0.8Co0.5Fe0.5O4, inhibit magnetic order and are assumed to be in the low-spin state.  相似文献   

12.
Zn7Sb2O12 forms a full range of Co-containing α solid solutions, Zn7−xCoxSb2O12, with an inverse-spinel structure at high temperature. At low temperatures for x<2, the solid solutions transform into the low temperature β-polymorph. For x=0, the βα transition occurs at 1225±25 °C; the transition temperature decreases with increasing x. At high x and low temperatures, α solid solutions are formed but are non-stoichiometric; the (Zn+Co):Sb ratio is >7:2 and the compensation for the deficiency in Sb is attributed to the partial oxidation of Co2+ to Co3+. From Rietveld refinements using ND data, Co occupies both octahedral and tetrahedral sites at intermediate values of x, but an octahedral preference attributed to crystal field stabilisation, causes the lattice parameter plot to deviate negatively from the Vegard's law. Sub-solidus compatibility relations in the ternary system ZnO-Sb2O5-CoO have been determined at 1100 °C for the compositions containing ?50% Sb2O5.  相似文献   

13.
Garnet-structure related metal oxides with the nominal chemical composition of Li5La3Nb2O12, In-substituted Li5.5La3Nb1.75In0.25O12 and K-substituted Li5.5La2.75K0.25Nb2O12 were prepared by solid-state reactions at 900, 950, and 1000 °C using appropriate amounts of corresponding metal oxides, nitrates and carbonates. The powder XRD data reveal that the In- and K-doped compounds are isostructural with the parent compound Li5La3Nb2O12. The variation in the cubic lattice parameter was found to change with the size of the dopant ions, for example, substitution of larger In3+(rCN6: 0.79 Å) for smaller Nb5+ (rCN6: 0.64 Å) shows an increase in the lattice parameter from 12.8005(9) to 12.826(1) Å at 1000 °C. Samples prepared at higher temperatures (950, 1000 °C) show mainly bulk lithium ion conductivity in contrast to those synthesized at lower temperatures (900 °C). The activation energies for the ionic conductivities are comparable for all samples. Partial substitution of K+ for La3+ and In3+ for Nb5+ in Li5La3Nb2O12 exhibits slightly higher ionic conductivity than that of the parent compound over the investigated temperature regime 25-300 °C. Among the compounds investigated, the In-substituted Li5.5La3Nb1.75In0.25O12 exhibits the highest bulk lithium ion conductivity of 1.8×10−4 S/cm at 50 °C with an activation energy of 0.51 eV. The diffusivity (“component diffusion coefficient”) obtained from the AC conductivity and powder XRD data falls in the range 10−10-10−7 cm2/s over the temperature regime 50-200 °C, which is extraordinarily high and comparable with liquids. Substitution of Al, Co, and Ni for Nb in Li5La3Nb2O12 was found to be unsuccessful under the investigated conditions.  相似文献   

14.
The NO catalytic direct decomposition was studied over La2CuO4 nanofibers, which were synthesized by using single walled carbon nanotubes (CNTs) as templates under hydrothermal condition. The composition and BET specific surface area of the La2CuO4 nanofiber were La2Cu0.882+Cu0.12+O3.94 and 105.0 m2/g, respectively. 100% NO conversion (turnover frequency-(TOF): 0.17 gNO/gcatalyst s) was obtained over such nanofiber catalyst at temperatures above 300 °C with the products being only N2 and O2. In 60 h on stream testing, either at 300 °C or at 800 °C, the nanofiber catalyst still showed high NO conversion efficiency (at 300 °C, 98%, TOF: 0.17 gNO/gcatalyst s; at 800 °C, 96%, TOF: 0.16 gNO/gcatalyst s). The O2 and NO temperature programmed desorption (TPD) results indicated that the desorption of oxygen over the nanofibers occurred at 80-190 and 720-900 °C; while NO desorption happened at temperatures of 210-330 °C. NO and O2 did not competitively adsorb on the nanofiber catalyst. For outstanding the advantage of the nanostate catalyst, the usual La2CuO4 bulk powder was also prepared and studied for comparison.  相似文献   

15.
The phase relations in the pseudo-binary system SrO-Fe2O3 have been investigated in air up to 1150°C by means of powder X-ray diffraction and thermal analysis. Sr3Fe2O7−δ, SrFeO3−δ and SrFe12O19 are stable phases in the entire investigated temperature region, whereas Sr2FeO4−δ and Sr4Fe3O10−δ decompose above 930±10°C and 850±25°C, respectively. Sr4Fe6O13±δ is entropy-stabilized relative to SrFeO3−δ and SrFe12O19 above 775±25°C. Extended solid-solution SrxFeO3−δ was demonstrated. On the Fe-deficient side, the extent of solid solubility appeared to decrease gradually with temperature, whereas an abrupt decrease due to formation of Sr4Fe6O13±δ was observed above 775°C on the Sr-deficient side.  相似文献   

16.
Phase equilibria, crystal structure, and transport properties in the (100−x) La0.95Ni0.6Fe0.4O3-xCeO2 (LNFCx) system (x=2-75 mol%) were studied in air. Evolution of phase compositions and crystal structure of components was observed. The LNFCx (2≤x≤10) are three-phase and comprise the perovskite phase with rhombohedral symmetry (R3?c), the modified ceria with fluorite structure (Fm3?m), and NiO as a secondary phase. These multiphase compositions exhibit metallic-like conductivity above 300 °C. Their conductivity gradually decreases from 395.6 to 260.6 S/cm, whereas the activation energy remains the same (Ea=0.04-0.05 eV), implying the decrease in the concentration of charge carriers. Phase compositions in the LNFCx (25≤x≤75) are more complicated. A change from semiconducting to metallic-like conductivity behavior was observed in LNFC25 at about 550 °C. The conductivity of LNFCx (25≤x≤75) could be explained in terms of a modified simple mixture model.  相似文献   

17.
Thermoelectric properties of polycrystalline La1−xSrxCoO3, where Sr2+ is substituted in La3+ site in perovskite-type LaCoO3, have been investigated. Sr-doping increases the electrical conductivity (σ) of La1−xSrxCoO3, and also decreases the Seebeck coefficient (S) for 0.01?x?0.40. A Hall coefficient measurement reveals that the increase in electrical conductivity arises from increases in both carrier concentration and the Hall mobility. The decrease in the Seebeck coefficient is caused by a decrease in carrier effective mass as well as increase in carrier concentration. The highest power factor (σS2) is 3.7×10−4 W m−1 K−2 at 250 K for x=0.10. The thermal conductivity (κ) is about 2 W m−1 K−1 at 300 K for 0?x?0.04, and increases for x?0.05 because of an increase in heat transport by conductive carrier. The thermoelectric properties of La1−xSrxCoO3 are improved by Sr-doping, and the figure of merit (Z=σS2 κ−1) reaches 1.6×10−4 K−1 for x=0.06 at 300 K (ZT=0.048). For heavily Sr-doped samples, the thermoelectric properties diminish mainly because of the decrease in the Seebeck coefficient and the increase in thermal conductivity.  相似文献   

18.
Zhuyi Wang 《Acta Physico》2008,24(3):375-378
The nanocrystalline LaCoxFe1-xO3 with different concentrations of Co was prepared by polyethylene glycol (PEG) sol-gel method and characterized by differential thermal analysis and thermal gravimetric analysis (DTA-TGA), X-ray diffraction (XRD), and scanning electron microscope (SEM). It was found that the crystal structure of perovskite-type could be obtained at 600 °C, and the concentration of Co had significant effects on the solid-state reaction and the average particle size of the obtained nanocrystals. Furthermore, the humidity-sensitive properties of nanocrystalline LaCoxFe1-xO3 were investigated, and it was found that LaCo0.3Fe0.7O3 exhibited higher sensitivity to humidity compared with other samples. The addition of Na2CO3 improved the humidity-sensitive properties of this sample, and made its response to humidity good in the whole humidity range of 11%-95% relative humidity (RH).  相似文献   

19.
The full LaCo1−xRhxO3 solid solution was investigated utilizing structural, electrical transport, magnetic, and thermal conductivity characterization. Strong evidence for at least some conversion of Rh3+/Co3+ to Rh4+/Co2+ is found in both structural and electrical transport data. The crystal structure is that of a rhombohedrally distorted perovskite over the range 0.0≤x≤0.1. The common orthorhombic distortion of the perovskite structure is found over the range 0.2≤x≤1.0. A crossover of all three orthorhombic cell edges occurs at x=0.5 giving the appearance of a cubic structure, which actually remains orthorhombic. The octahedra in the orthorhombic structure must be distorted for x values less than 0.5, and the observed distortion suggests orbital ordering for Co2+. Electrical resistivity measurements as a function of temperature show semiconducting-like regions for all compositions. There is a steady increase in electrical resistivity as the Rh content increases. Large positive thermopower values are generally obtained above 475 K. With increasing Rh substitution there is a decrease in thermal conductivity, which slowly rises with increasing temperature due to increased electrical conductivity. The electronic part of the thermal conductivity is suppressed significantly upon Rh substitution. A thermoelectric figure-of-merit (ZT) of about 0.075 has been achieved for LaCo0.5Rh0.5O3 at 775 K, and is expected to reach 0.15 at 1000 K.  相似文献   

20.
The structure, the energetics and the internal redox reactions of La0.7Sr0.3FexMn1−xO3 have been studied in the complete solid solution range 0.0<x<1.0. High temperature oxide melt drop solution calorimetry was performed to determine the enthalpies of formation from binary oxides and the enthalpy of mixing. There is a noticeable change in the energetics of the solid solution near x=0.7, which is due to the growing concentration of Fe4+ at higher Fe/(Fe+Mn) ratio. The balance between different valences of the transition metals, Mn and Fe, is the main factor in determining the energetics of the La0.70Sr0.30FexMn1−xO3 solid solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号